An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino Bohan Zhang, Christian Bilien, Andrew Pavlo
Background & Related Work

• Self-adaptive (Physical Design)
 • Automatic Index Selection
 • Automatic partitioning

• Self-tuning (Autotune Knob Configuration)
 • Heuristics
 • Only target subset of knobs
 • Static rules does not capture relationship between knobs
 • Example: BestConfig
 • ML
 • Ability to consider more knobs
 • Able to handle dependencies between knobs
 • Example: iTuned (BO), CDBTune (RL), iBTune (DNN)
Motivation

• Previous ML-based tuning studies did not consider Real-world
 • Workload Complexity
 • System Complexity
 • Operating Environment

• This paper
 • Tries to model real-world complexity
 • Focus on enterprise Oracle DBMS (v12) instance
 • Use a real-world workload in a production environment
 • Use virtualised computing infrastructure with non-local storage
Ottertune – ML-based DB tuner
Ottertune ML Algorithms

- Gaussian Process Regression (GPR)
- Deep Neural Networks (DNN)
- Deep Deterministic Policy Gradient (DDPG)

1. Data Preprocessing
2. Knob Recommendation
GPR and DNN
Data Preprocessing

• Metric Pruning
 • Factor Analysis
 • K-means Clustering

• Knob Ranking
 • Lasso Regression
 • $Y = w_1x_1 + w_2x_2 + \ldots$

• Workload Mapping
 • Workload Characterisation (Metrics)
 • Euclidean Distance
GPR and DNN Knob Recommendation

- **GPR**
 - Input: Array of knobs
 - Output: Target Metrics and Uncertainty Value
 - Acquisition Func: Upper Confidence Bound
 - Cons: Do not perform well on high dimension

- **DNN**
 - Input: Knobs
 - Output: Predicted Metrics
 - Structure: Two hidden layers with 64 neurons each + Dropout Regularisation
DDPG

- **Actor**
 - Input: State (Metrics)
 - Output: Action (Which value to use for a knob)
 - Decide how to set a knob

- **Critic**
 - Input: Action, State
 - Output: Q-value
 - Provide feedback on the choice of knob

- **Replay Memory**
 - Store training tuples in ranked order
 - Ranked by the error of predicted Q-value
Ottertune – Field Study
Evaluation – Performance Variability

• Problem
 • Latency in shared-disk -> Inconsistent results
 • Performance on same VM can fluctuate
 • Cannot reliability compare tuning sessions

• Solution
 • Three tuning sessions per algorithm
 • Run optimal configurations consecutively, 3 times, on 3 different VMs
Minor Criticism

• No Comparison to other ML-based tuner
• Each tuning session is extremely time consuming
 • 3 to 5 days to complete
• Missing some minor details on
 • No explanation on how reward is calculated in DDPG
 • How measurement of workload similarity is conducted in GPR and DNN
• Evaluation is heavily affected by latency of non-local storage