CherryPick
Adaptively Unearthing the Best Cloud Configuration for Big Data Analytics

Venue: NSDI 2017

Presentation by Andreea Zaharia (az396) | R244 | 08/11/2021
Background

Motivation

- **Choices:** cloud providers, machine types, cluster size.
- **Good config** —> saves time & space —> higher quality service.
- **Bad cloud config** —> up to 12x higher cost and 3x running time.
- **Complementary** to work on optimising application configs.
- **Recurring jobs** would benefit the most…
 - … and up to 40% of analytics jobs are recurring!
Background
Challenges and prior work

- Prior work failed to simultaneously solve all three challenges.
- Searching approaches: e.g. coordinate descent, random search.
- Modelling approaches: e.g. Ernest.

Overhead
Cost of the search.

Accuracy
Running time and cost, compared to the optimal.

Adaptivity
Suitability to applications with different internal structural.
Design

Key ideas

- **Cloud configuration**: number of VMs, CPU count & speed/core, RAM/core, disk count & speed, network cap of the VM.

- **Performance model**: accurate enough to distinguish the near-optimal configs from the rest.

- **Bayesian Optimisation**: for black-box functions; non-parametric
Design Workflow

- Iterative and dynamic workflow:
 - Pick the next cloud config, by the performance model.
 - Run the config and update the model.
Design
Bayesian Optimisation

- **Prior**: models performance and cost of a config; GP.

- **Acquisition**: ranks and chooses the next config.

- **Posterior**: confidence interval of cost and runtime.
Design

Noise handling

• BO is great at handling additive noise…

• … but noise in the cloud is multiplicative.

• Idea is to minimise the logarithm of the cost function instead:

\[
\begin{align*}
\text{minimize} & \quad \log C(\bar{x}) = \log P(\bar{x}) + \log T(\bar{x}) \\
\text{subject to} & \quad \log T(\bar{x}) \leq \log T_{\text{max}}
\end{align*}
\]
Implementation

Architecture
Evaluation

Experiment summary

• **Input:** five popular analytical jobs.
 • 66 reasonable configurations, of four families in Amazon EC2.

• **Objective:** minimise cost, under running time constraints.

• **Results:**
 • 45-90% to pick optimal, otherwise finds a solution within 5%.
 • Alternatives take up 75% more time and 45% more overhead.
Evaluation

Experiment results

(a) Running cost

(b) Search cost

Figure 7: Comparing CherryPick with coordinate descent. The bars show 10th and 90th percentile.
Contribution
Differences to prior work and novelty points

• CherryPick achieves all three goals:
 • High accuracy: modelling only top ranking configs.
 • High adaptivity: black-box modelling.
 • Low overhead: searching interactively.
Other comments

Criticism

• “45-90% chance to find the optimal” — does not mean much…

• **Representative workloads** are needed for CherryPick to work.
 • Difficult to find. The paper brushes off this limitation.

• **The prior** is set to GP and cannot be modified by the user.
 • Disables improvements by application specific knowledge.

• Can it always converge to a near optimal solution?
Questions?