
PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs
Summary Presentation for R244 Seminar 3

Samuel Stark
25/10/2021

University of Cambridge

Background

• Graph-Parallel Computation

– Run a vertex-program on all vertices on graph

– Vertex-program communicates with adjacent vertices

– Each vertex ends up with a value (eg. rank in PageRank, distance in SSSP)

– Many data dependencies => MapReduce isn’t suitable[Low+10]

• In 2012, main system is Google’s Pregel[Mal+10] + similar implementations

– Piccolo[PL10], Giraph[21b]

• GraphLab[Low+10] also released in 2010

– Prequel to PowerGraph, shares most authors
1

Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

Figure 1: Example partitioning
for symmetric node distribution

2

Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

Figure 2: Example partitioning
for asymmetric node distribution

2

Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

𝑃(𝑑) ∝ 𝑑−𝛼

Figure 3: In-degree distributions
for Twitter follower
network[Gon+12]

2

Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

Figure 4: Example split-vertex
partitioning for asymmetric
node distribution

2

PowerGraph Parallelization

Gather-Apply-Scatter

Gonzalez et al. observe that (most) vertex programs have three distinct phases:

1. Gather
2. Apply
3. Scatter

Message combiner(m1, m2) :
return Message(m1.value() +

m2.value());

void PregelPageRank(msg) :
float total = msg.value();
vertex.val = 0.15 + 0.85*total;
foreach(nbr in out_neighbors) :

SendMsg(nbr, vertex.val);
Figure 5: PageRank in Pregel[Gon+12]

void GraphLabPageRank(Scope scope) :
float accum = 0;
foreach (nbr in scope.in_nbrs) :

accum += nbr.val;

vertex.val = 0.15 + 0.85*accum;

// No explicit message passing

Figure 6: PageRank in GraphLab[Gon+12]
3

Gather-Sum-Apply-Scatter

PowerGraph adds an extra stage:
1. Gather
2. Sum
3. Apply
4. Scatter

Gather + Sum parallelized across nodes,
eventually get a single sum-of-gathers

Apply on one node

Scatter parallelized across nodes

gather(𝐷𝑢, 𝐷(𝑢, 𝑣), 𝐷𝑣):
return Dv.rank

sum(a, b): return a + b

apply(𝐷𝑢, acc):
rnew = 0.15 + 0.85*acc
𝐷𝑢.delta = (rnew - 𝐷𝑢.rank)
𝐷𝑢.rank = rnew

scatter(𝐷𝑢, 𝐷(𝑢, 𝑣), 𝐷𝑣):
if(|𝐷𝑢.delta| > ε) Activate(v)
return delta
Figure 7: PageRank in PowerGraph[Gon+12]

4

Delta Caching

PowerGraph also allows for delta-caching.

It remembers the last sum value, and if your
neighbours have changed, they’ll apply a delta to it.

If a vertex’s value hasn’t changed, you don’t need to
talk to it.

Δ

Δ

?
?

??
?
?

?

?

Figure 8: Comparison of no delta
caching vs delta caching

5

Parallelization

Great, now we can split vertex computation across multiple nodes!

But how do we partition vertices effectively?

Figure 9: How PowerGraph splits computation across nodes[Gon+12]
6

PowerGraph Partitioning

Improving Edge Cut

Balanced 𝑝-way Edge Cut

Assign vertices to nodes, balance the
number of cut edges

Overhead ∝ 𝑛𝑒𝑑𝑔𝑒𝑐𝑢𝑡𝑠
Used by Pregel, GraphLab

Bad for power-law graphs

Falls back to random vertex placement,
which is bad[Gon+12]

Balanced 𝑝-way Vertex Cut

Randomly assign edges to nodes, should
balance cut vertices

Overhead ∝ 𝑛𝑣𝑒𝑟𝑡𝑒𝑥𝑐𝑢𝑡𝑠
Good for regular and power-law
graphs[Gon+12]

Balanced edges bring balanced
communication and storage

Proven to be strictly better than edge cuts

7

Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Track the assignment of each vertex, use a ruleset to determine where to place the next
edge.

Guaranteed to be no worse (and usually better) than random placement...

but it’s not embarrassingly parallel!

8

Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Track the assignment of each vertex, use a ruleset to determine where to place the next
edge.

Guaranteed to be no worse (and usually better) than random placement...

but it’s not embarrassingly parallel!

8

Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Oblivious

Cheat!

Just track your own assignments, don’t
check anyone else’s.

Coordinated

Maintain a distributed database of
assignments

Local caching reduces communication, but
decreases accuracy

8

Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Figure 10: Impact of Greedy Vertex Cuts on vertex cuts and runtime
8

Implementations

Synchronous
Run every v-program once,
waits for others to finish,
starts again.

Cannot execute some
programs

eg. Graph Coloring

Asynchronous
Run v-programs in parallel,
don’t wait for other
programs

Allow arbitrary interleaving.

Non-deterministic,
can lead to divergence

Async+Serialized
Run v-programs in parallel,
except for vertices on the
same edge.

All parallel executions have
an equivalent serial
execution.

Deterministic

Pregel is Synchronous, GraphLab is Async+Serialized

9

Evaluations

Figure 11: Work Imbalance on power-law
graphs[Gon+12] Figure 12: Runtime on power-law graphs[Gon+12]

10

Evaluations

PageRank Runtime |𝑉| |𝐸| System
Hadoop 198 s − 1.1 B 50x8
Spark 97.4 s 40M 1.5 B 50 × 2
Twister 36 s 50M 1.4 B 64x4
PowerGraph (Sync) 3.6 s 40M 1.5 B 64x8

Table 1: Relative performance of PageRank vs other systems[Gon+12]

10

Where are they now?

• GraphLab[Low+10] -> PowerGraph[Gon+12], GraphChi[KBG12]
– PowerGraph basically deprecated since 2015
– GraphX implemented PowerGraph on Spark[Xin+13], now merged into Spark[21a]

• Prof. Carlos Guestrin started GraphLab, Inc -> Dato, Inc -> Turi
– Turi was bought by Apple in 2016[Sop16], Prof. Guestrin now Head of ML at
Apple

– Main product is (GraphLab|Turi) Create, built for generic ML.
• PowerGraph was still influential!

– 400+ citations
– eg. Liu et al. observes the partitioning methods were used in
GraphBuilder[JLW13] and then built upon in PowerLyra[Che+15],
LightGraph[Zha+14]

11

Summary

Pros

• Splitting vertex computation across
nodes is cool

• Parallelizing GAS is very cool
• Paper seems very foundational
• Paper has had lasting impact

Cons

• Limited to single vertex computations,
less well suited to multi-stage or global
computations (GPS is a Pregel-based
system that attacked this[SW13])

• Gather-Apply-Scatter isn’t always
intuitive, as observed by [SW14]

• Combined Implementation+Evaluation
section leads to lack of clarity.

12

Questions/Comments?

12

References i

References

Apache Spark. The Apache Software Foundation, 24th October 2021. url:
https://github.com/apache/spark (visited on 24/10/2021).

Apache/Giraph. The Apache Software Foundation, 18th October 2021. url:
https://github.com/apache/giraph (visited on 24/10/2021).

https://github.com/apache/spark
https://github.com/apache/giraph

References ii

Rong Chen et al. ‘PowerLyra: Differentiated Graph Computation and Partitioning
on Skewed Graphs’. In: Proceedings of the Tenth European Conference on
Computer Systems. EuroSys ’15: Tenth EuroSys Conference 2015. Bordeaux
France: ACM, 17th April 2015, pp. 1–15. isbn: 978-1-4503-3238-5. doi: 10/gm7pv7.
url: https://dl.acm.org/doi/10.1145/2741948.2741970 (visited on
24/10/2021).

Joseph E. Gonzalez et al. ‘PowerGraph: Distributed Graph-Parallel Computation
on Natural Graphs’. In: Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation. OSDI’12. USA: USENIX Association,
8th October 2012, pp. 17–30. isbn: 978-1-931971-96-6.

https://doi.org/10/gm7pv7
https://dl.acm.org/doi/10.1145/2741948.2741970

References iii

Nilesh Jain, Guangdeng Liao and Theodore L. Willke. ‘GraphBuilder: Scalable
Graph ETL Framework’. In: First International Workshop on Graph Data
Management Experiences and Systems. GRADES ’13. New York, NY, USA:
Association for Computing Machinery, 23rd June 2013, pp. 1–6. isbn:
978-1-4503-2188-4. doi: 10/gm7pz3. url:
https://doi.org/10.1145/2484425.2484429 (visited on 24/10/2021).

Aapo Kyrola, Guy Blelloch and Carlos Guestrin. ‘GraphChi: Large-Scale Graph
Computation on Just a PC’. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation. OSDI’12. USA: USENIX
Association, 8th October 2012, pp. 31–46. isbn: 978-1-931971-96-6.

Kevin Lang. ‘Finding Good Nearly Balanced Cuts in Power Law Graphs’. In:
(2004), p. 10.

https://doi.org/10/gm7pz3
https://doi.org/10.1145/2484425.2484429

References iv

Ning Liu et al. ‘Large-Scale Graph Processing Systems: A Survey’. In: Frontiers of
Information Technology & Electronic Engineering 21.3 (March 2020),
pp. 384–404. issn: 2095-9184, 2095-9230. doi: 10/ghszds. url:
http://link.springer.com/10.1631/FITEE.1900127 (visited on
24/10/2021).

Yucheng Low et al. GraphLab: A New Framework for Parallel Machine Learning.
25th June 2010. arXiv: 1006.4990 [cs]. url:
http://arxiv.org/abs/1006.4990 (visited on 24/10/2021).

Grzegorz Malewicz et al. ‘Pregel: A System for Large-Scale Graph Processing’. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’10. New York, NY, USA: Association for Computing Machinery,
6th June 2010, pp. 135–146. isbn: 978-1-4503-0032-2. doi: 10/fh62wr. url:
https://doi.org/10.1145/1807167.1807184 (visited on 24/10/2021).

https://doi.org/10/ghszds
http://link.springer.com/10.1631/FITEE.1900127
https://arxiv.org/abs/1006.4990
http://arxiv.org/abs/1006.4990
https://doi.org/10/fh62wr
https://doi.org/10.1145/1807167.1807184

References v

Russell Power and Jinyang Li. ‘Piccolo: Building Fast, Distributed Programs with
Partitioned Tables’. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. OSDI’10. USA: USENIX Association,
4th October 2010, pp. 293–306.

Taylor Soper. Exclusive: Apple Acquires Turi in Major Exit for Seattle-Based
Machine Learning and AI Startup. GeekWire. 5th August 2016. url:
https://www.geekwire.com/2016/exclusive-apple-acquires-
turi-major-exit-seattle-based-machine-learning-ai-startup/
(visited on 24/10/2021).

https://www.geekwire.com/2016/exclusive-apple-acquires-turi-major-exit-seattle-based-machine-learning-ai-startup/
https://www.geekwire.com/2016/exclusive-apple-acquires-turi-major-exit-seattle-based-machine-learning-ai-startup/

References vi

Semih Salihoglu and Jennifer Widom. ‘GPS: A Graph Processing System’. In:
Proceedings of the 25th International Conference on Scientific and Statistical
Database Management - SSDBM. The 25th International Conference. Baltimore,
Maryland: ACM Press, 2013, p. 1. isbn: 978-1-4503-1921-8. doi: 10/gm7pzz. url:
http://dl.acm.org/citation.cfm?doid=2484838.2484843 (visited
on 24/10/2021).

Semih Salihoglu and Jennifer Widom. ‘HelP: High-Level Primitives For
Large-Scale Graph Processing’. In: GRADES Workshop on Graph Data
Management Experiences and Systems. Utah: Stanford InfoLab, June 2014. url:
http://ilpubs.stanford.edu:8090/1085/ (visited on 22/10/2021).

https://doi.org/10/gm7pzz
http://dl.acm.org/citation.cfm?doid=2484838.2484843
http://ilpubs.stanford.edu:8090/1085/

References vii

Reynold S. Xin et al. ‘GraphX: A Resilient Distributed Graph System on Spark’. In:
First International Workshop on Graph Data Management Experiences and
Systems. GRADES ’13. New York, NY, USA: Association for Computing Machinery,
23rd June 2013, pp. 1–6. isbn: 978-1-4503-2188-4. doi: 10/gfs42m. url:
https://doi.org/10.1145/2484425.2484427 (visited on 24/10/2021).

Yue Zhao et al. ‘LightGraph: Lighten Communication in Distributed
Graph-Parallel Processing’. In: 2014 IEEE International Congress on Big Data.
2014 IEEE International Congress on Big Data. June 2014, pp. 717–724. doi:
10/gm7pz4.

https://doi.org/10/gfs42m
https://doi.org/10.1145/2484425.2484427
https://doi.org/10/gm7pz4

	Intro
	PowerGraph Parallelization
	PowerGraph Partitioning
	Appendix
	References

