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Massive Data: Scale-Up vs Scale-Out

» Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

- Parallelisable data distribution and processing is key

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

» Scale-out: add more nodes to system (e.g. Amazon EC2)




Technologies supporting Cluster Computing

Distributed infrastructure
= Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

cf. Many core (parallel computing)

Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File System
(HDFS), Google File System (GFS))

Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4])

Programming model
= Distributed processing (e.g. MapReduce)

Data Processing Stack

» Data Processing Layer

Streaming Graph Processing

- uery Language Machine Learning -
Processmg_ Picg?, Hi\)//e, SpgrkSgQL, Rllib, Caffe, Keras, Pregel, Giraph,
Storm, SEEP, Naiad, DryadLINQ Torch. MLIib GraphLab, PowerGraph,
Spark Streaming, Flink, . (Dato), GraphX,
Milwheel, Google Execution Engine X-Stream...
Dataflow... MapReduce, Spark, Tensorflow, Ray, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools of =
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack... a4l




Data Flow Programming

= Non-standard programming models
= Powerful abstraction: mapping computation into

dataflow graphs

X

e

Function f(x, y, z) = x*y + z

out

MapReduce Programming

Target problem needs to be parallelisable
Split into a set of smaller code (map)
Next small piece of code executed in parallel

Results from map operation get synthesised into a result of

original problem (reduce)

Input data

=

Reduce(]

QOutput data
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Data Flow Programming Examples
= Data (flow) parallel programming
= e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...
MapReduce: DAG (Directed Acyclic Graph) TensorFlow
Hadoop based: Dryad/Spark... ; e |
122|415 ] - m
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Two-Stage fixed dataflow
More flexible dataflow model
A
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Emerging Massive-Scale Graph Data
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Graph Computation Challenges

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

* Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

»= High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio - E

Data-Parallel vs. Graph-Parallel

= Data-Parallel for all? Graph-Parallel is hard!
= Data-Parallel (sort/search - randomly split data to feed MapReduce)

= Not every graph algorithm is parallelisable (interdependent
computation)

= Not much data access locality
= High data access to computation ratio

Data-Parallel

Table /

L B Result

Graph-Parallel

Dependency Graph
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Graph-Parallel
= Graph-Parallel (Graph Specific Data Parallel)

= Vertex-based iterative computation model
= Use of iterative Bulk Synchronous Parallel Model
> Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

= Optimisation over data parallel
=» GraphX/Spark (U.C. Berkeley)

= Data-flow programming — more general framework
= NAIAD (MSR), TensorFlow..
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Bulk synchronous parallel: Example

» Finding the largest value in a connected graph

Local Computation |
-

o - Message
Communication

‘

Local Computation

‘

Communication

‘
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Are Large Clusters and Many cores Efficient?

» Brute force approach really efficiently works?
= Increase of number of cores (including use of GPU)

= Increase of nodes in clusters
Big Iron

Large Cluster

Avery Ching,
A billion edges isn’t cool. Facebook
You know what’s cool? @Strata, 2

Graph Edges Hardware

A TRILLION edges.

1 trillion Tsubame

1 trillion Cray

1 trillion Blue Gene

Yes, using 3940 machines

1 trillion NEC
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Do we really need large clusters?

» Laptops are sufficient?

[ Twenty pagerank iterations ]

System cores twitter_rv uk_2007_05 Fixed—point iteration:
Spark 128 857s 1759s All vertices active in
Giraph 128 596s 1235s each iteration
GraphLab 128 495D 833s (50% computation, 50%
GraphX 128 419s Ca62sD \ communication)
B [Single thread | 1] Czo0s Cesi1s

[Label propagation to fixed-point (graph connectivity) ]

| System | cores | twitter_rv | uk_2007_05
[Spark | 128| 1784s | 8000s+ Traversal: Search
Giraph | 128| 200 | 80005+ proceeds in a frontier
[GraphLab | 128] 2425 71ds (90% co!'npl_Jtation, 10%
[Graphx | 128 251s]| 800s communication)

B [Single thread | 1] Cas53sh Ca17s

1405

from Frank McSherry HotOS 2015
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Data Processing for Neural Networks

= Practicalities of training Neural Networks
» Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification Reinforcement Learning
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Performance Improvement

= One or more beefy = Parameter Architecture: exploit
GPUs both Data Parallelism and Model
Parallelism (by Google)

’ —
Parameter Server W = W - WAW
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Computer Systems Optimisation

» How do we improve performance:
= Manual tuning
= Auto-tuning

» What is performance? - objective function of optimisation
= Resource usage (e.g. time, power)
= Computational properties (e.g. accuracy, fairness, latency)

= What is Optimisation Model?
= Short-term dynamic control (e.g. stream processing: distinct workload or
dynamic workload)
= Combinatorial optimisation (e.g. indexing DB, device assignment)

[ Many systems problems are combinatorial in nature ]
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Turing Computer System is Complex Task

» Increasing data volumes and high-dimension parameter space
» Expensive Objective Functions
» Hand-crafted solutions impractical, often left static or configured

through extensive offline analysis
= Not well-tuned system’s performance | Peepleaming

- Learning-rate

does not scale e e
TN TN N - Activation Function
ﬂ:l uster Workload \ Feature extraction + Classification
Management
[ o ?
Scheduler .« Compiler Optimisation

I Clang Front End ‘l
® O ce x LLVM Optlmlzer IR—>| IR—> IR—>
@ [((\?5\
Code Generator
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Auto-tuning Complex Systems

= Many dimensions

= Expensive objective function

®* Hand-crafted solutions impractical
(e.g. extensive offline analysis)

»

Grid search 6 € [1, 2, 3, ...]
Random search

Hill-climbing (e.g. ( )per'\'UUner)

Bayesian optimisation (e.g. speaRMmT)

Evolutionary approaches (e.g.! ﬁf?i:i"l.?etaBricks )

Blackbox Optimisation

v can surpass human
expert-level tuning

1000s of evaluations
of objective function

Computation more
expensive

Fewer samples
190
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Search Parameter Space

Random search: No risk of 'getting stuck’
potentially many samples required

Evolution strategies: Evaluate
permutations against fithess function

Bayes Opt: Sample efficient, requires
continuous function, some configuration

Genetic
algorithm /
Simulated
annealing

Random Search

No overhead Slight overhead

Medium-high
#evaluation

High #evaluation

Low #evaluation

Bayesian
Optimisation

High overhead

20
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Parameter Space of Task Scheduler

= Tuning distributed SGD scheduler over TensorFlow
= 10 heterogeneous machines with ~32 parameters
= —10%°3 possible valid configurations
= QObjective function: minimise distributed SGD iteration time

050 EQ ;

Parameter X v
server

Worker X v v v

# Inputs 0 10 16 10 - 28

S
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Bayesian Optimisation

= Iteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model
= Data efficient: converges quickly

Input: Objective function f{) y '

Input: Surrogate function initial distribution G Configuration __Q_! Gaussian | . Predicted

Input: Acquisition function a() Space | == Performance
1: fori=1,2,...do : '

2 Sample point: x; « argmax, a(G,x) Objective > Performance
3 Evaluate new point: y, < f(x,) Function

4: Update surrogate distribution: G < G | (x;, )

5. end for

(D) Find promising point (high performance value in the model)
(2) Evaluate the objective function at that point

(3) Update the model to reflect this new measurement

220
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Bayesian Optimisation

Obijective »

Domain
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Bayesian Optimisation
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Bayesian Optimisation

Obijective °

1
Domain
IS
25
Bayesian Optimisation
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Objective o
Domain
o IS
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Bayesian Optimisation

3
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Obijective »
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Bayesian Optimisation
Objective : T
Domain
28
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Bayesian Optimisation

Objective ¢ /x_/

Domain

29
Bayesian Optimisation
Objective /—\/
1
Domain
30
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Bayesian Optimisation

3

Objective ° /\—/
1
Domain
B IS
31
Bayesian Optimisation
Objective o
Domain
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Bayesian Optimisation

Objective © /\/

2 3

L)

Domain

o

Bayesian Optimisation

Objective o ‘/\—/
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Bayesian Optimisation

ObjeCtive 0 /\/

Domain

o
o
w

Bayesian Optimisation

Domain

o
N
w
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Further Bayesian Optimisation...

= BO overview/Tutorial

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_Archambeau.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_adams.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_gonzalez.pdf

= Papers
= Review paper by Shahriari, et al. (2016): Taking the Human Out of the
Loop: A Review of Bayesian Optimization. Proceedings of the IEEE
104(1):148-175, 2016.
= Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for
Machine Learning. CIFAR NCAP Summer School.

= Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and

Simulation Optimization. INFORMS Annual Meeting. 370
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Bayesian Optimisation
= Iteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model
= Data efficient: converges quickly
Configuration Q Gaussian | - Predicted
Space : |_ Process _ Performance
@ Objective Performance
Function
Pros:
+/ Data efficient: converges in few iterations
v/ Able to deal with noisy observations
Cons:
X In many dimensions, model does not converge to the objective functionjzﬁ\:
38
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g
Structured Bayesian Optimisation (SBO)
Probabilistic Model written in
l Probabilistic C++
Gauss
/ o ¥ oc /
Configuration @ Probabilistic Predicted
Space Program™® Performance
\ \\—/‘@
@ Objective Performance & Developer-specified,
Function Runtime properties model of per‘formance
from observed
performance + arbitrary
v/ Better convergence runtime characteristics
v Use all measurements
BOAT: a framework to build BespOke Auto-Tuners o
390
39
Probabilistic Programming: Probabilistic C++
PL Al ML STATS
Pyro  Stheno
Probabilistic C++
Figaro ﬁ:ﬁﬂgj’%&{@%‘}c m
2010 FHaNsAl .
Probjog Factorie JAGS
Blog
2000 | IBAL
Prism WinBUGS
Discrete RV's Bounded
1990 Only Recursion
BUGS
Simula Prolog 4? \:
40

20



= Easy to use and
well suited to SBO

* Understand
general trend of
Objective function

= High precision in

region of optimum

for finding highest
performance

Semi-parametric Model

B

2

Time (us)
Time (us)
n

1

-

Too restrictive

Too generic
|

1000 2001
Vector size

(a) Parametric (Linear regression)
4

1000

Vector size

. Just right

Time (us)
N

Ground Truth
|

-

—— Predicted Time

-T- Model Observation

9 7000
Vector size

(c) Semi-parametric (Combination)

2000

(b) Non-parametric (Gaussian process)

)
-
(1

2001
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Example: JVM Garbage Collection

= Cassandra's garbage collection

Cassandra

JVM

Garbage collection flags:

e Young generation size
e Survivor ratio
e Max tenuring threshold

= Minimise 99th percentile latency of Cassandra

A

(411N

42
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Performance Improvement from Structure

User-given probabilistic model structured in semi-parametric
model using Directed Acyclic Graph

GC Flags GC Rate

99th Percentile

Latency Latency

Model

(Cassandra) to minimise latency

GC Average Gévderagf
Duration Model uration
Tune three JVM parameters of database

4!3‘J\.§
43
i
'-.n‘..
DAG model in BOAT
CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
es = ygs * sr / (sr + 2.0);// Eden space's size
ss = ygs / (sr + 2.0); // Survivor space's size
// Define the dataflow between semi-parametric models
rate = output('rate”, rate_model, es);
duration = output("duration"”, duration_model,
es, ss, mtt);
latency = output('latency”, latency_model,
rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model; S
: A
44
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GC Rate Semi-parametric model

struct GCRateModel : public SemiParametricModel<GCRateModel> {

GCRateModel() {
allocated_mbs_per_sec =
std: :uniform_real_distribution<>(©.0, 5000.0)(generator);
// set the GP parameters here

}

double parametric(double eden_size) const {
// Model the rate as inversely proportional to Eden's size
return allocated _mbs_per_sec / eden_size;

}

double allocated_mbs_per_sec;

1

G
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Evaluation: Garbage collection

25

I Cassandra default
[ Optimised

N
o

= =
(=] w

w

99th Percentile Latency (ms)

A B D
YCSB core workload

A

S
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Evaluation: Garbage collection

Iteration

m

£ 20 ‘ ‘ ‘
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Distributed Scheduling of Neural Networks (SGD)
= Tune scheduling over 10 machines, setting ~30 parameters
(e.g. ~10%3 possible valid configurations)
L e @ @ | @
L g9 'g®
T * £ i d
Worker x v v . v
s A
48
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Evaluation: Neural network scheduling

’J; o0-6—9 ‘ ‘ ' ‘ |
o 100} T OpenTu!ﬂer Default configuration: 9.82s
E 50 + Spearmint OpenTuner: 8.71s
p Tt -+ Bespoke optimizer BOAT: 4.31s
@] &
§ [1]Htteees Existing systems don’t converge!
@ HHENRL L L
.4; 107 Ill[lllIIII\(P_?\?*?‘?*?‘Q]OGODOOOOOi
O
Jm_, 5 I e i S
0
o
m 1 L L L L 1
0 5 10 15 20 25 30
Iteration
49
Bayesian Optimisation not for Combinatorial Model
~«c| Compiler Optimisation ) ! S
cong Front End LLVM Compiler pass list optimisation
;‘1 (BaysOpt vs Random Search)
LLVM Optlmlzer IR—| 9.5
Code Generator v i
@ Optimisation
£
'_
&
10
Iteration
50
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Reinforcement Learning for Optimisation

Many problems in systems are ssequential Decision Making

and/or Combinatorial Problems on graph data
= Compiler Optimisation
= Input: XLA/HLO graph
= Objective: Scheduling fusion of ops
= Chip placement
= Input: Chip netlist graph
= Objective: placement on 2D of ND grids
= Datacentre resource allocation
= Input: job - workload graph
= Objective: Placement on datacentre cells and racks
= Packet Classification

= Input: network packets
= Objective: minimise the classification time and memory footprint
= Network congestion control with multiple connections

= Wide range of signals to make decisions (e.g., VM allocation)
= Database: Query optimiser, Dynamic indexing...

Reinforcement Learning
» Agent interacts with Dynamic
environment

» Goal: Maximise expectations over State +
rewards over agent’s lifetime ¥ Reward

= Notion of Planning/Control, not
single static configuration Environment

What makes RL different from other ML paradigms?
= There is no supervisor, only a reward signal
*= Feedback is delayed, not instantaneous
= Time really matters (sequential)
= Agent’s actions affect the subsequent data it receives

Model-free and Model-based RL

ST

-

“,




A brief history of Deep Reinforcement Learning Tools

Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

Gen (2016-17): OpenAl gym gives unified task interface, reference
implementations

* Good results on some environments (e.g. game), difficult to retool to new
domains and execution modes

= Abstractions/Libraries: not fully reusable, customised towards game
simulators

= High implementation risk: lack of systematic testing, performance
strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions
(Ray RIlib, RLGraph), some standard flavours emerge

Still Problems... Tightly coupled execution/logic, testing, reuse... 5§J

o™
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RLIib (UC Berkeley) Architecture

User perspective: three main

layers to RLIib: 1. APIs that make RL accessible

~

OpenAl Policy | [ Offiine to a variety of applications
G Multi-Agent .
ym Serving Data
Custom Algorithms RLIib Algorithms 2. Collection of best-in-class

reference algorithms

P

: 3. Primitives for implementing
L L R —.

W
1

2

oS
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RLgraph: Modular Dataflow Composition

[Agenthulti Agent RL apps/optimisation modules]
-

Prebuilt models, Inference | Agent API ‘

Graph Gr_aph
executor/ Builder

API, Component Configuration

H 2ot devices/
Model Design, Dataflow Composition I::> profiling OP registry

RL Component Graph |

Local backends

Local Backends Variables/Operations

* ... is a programming model to design

TensorFlow Eyforch and execute RL algorithms across

— - - execution paradigms
Distributed Execution Engine

Distributed TF Horovod By * ... generates incrementally testable,

through a staged build process

Hardware: CPU, GPU, TPU, FPGAs...

(4]

transparently configurable code
A:

RL in Computer Systems: Practical Considerations

Action spaces do not scale well:

= Systems problems often combinatorial

Exploration in production system not a good idea

» Unstable, unpredictable

Simulations can oversimplify problem

= Expensive to build, not justified versus gain

Unlike supervised learning: Not single dominant execution pattern
Algorithms highly sensitive to hyper-parameters

Online steps take too long

w”
of
(1
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Optimising DNN Computation with Graph Substitutions
= TASO (SOSP, 2019): Performance improvement by

transformation of computation graphs
»= In progress: use of Reinforcement Learning

relu X

P — T
© matmul  matmul :

e caled

A B

(a) before substitution (b) after substitution

=
ST

N/
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Chip Placement with Reinforcement Learning

= A. Mirhoseini and A. Goldie: Chip Placement with Deep
Reinforcement Learning, ISPD, 2020.

Partitioning-Based Methods Stochastic/HEl-Climbing Methods
(g, MinCut) (g, Simulated Annealing)
® A form of graph resource optimization
! e Place the chip components to minimize the latency of computation, power
Analytic Soivers Learning-Based Methods

(0.9 RoPtAza) consumption, chip area and cost, while adhering to constraints, such as
congestion, cell utilization, heat profile, etc.

Port P1

Macro pin -
PO_M1 P1_M1
Port PO
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Summary: Massive Data Processing and Optimisation

- Dataflow is key to improve performance

- Parameter space is complex, large and dynamic/combinatorial

= Systems are nonlinear and difficult to model manually - Exploit ML

»= Reinforcement Learning to optimise dynamic combinatorial problem
= Key concept behind is Dataflow (~=Graph) structural
transformation/Decomposition

- Exploit structural information for model decomposition to accelerate

optimisation process

- Bayesian Optimisation and Reinforcement Learning are key

A
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Gap between Research and Practice
\
ool
Device Placement Optimization with Reinforcement Learning _ 20
\
Azalia Mirhoseini*'? Hieu Pham”*'? Quoc V.Le' Benoit Steiner' Rasmus Larsen' Yuefeng Zhou'
Naveen Kumar® Mohammad Norouzi' Samy Bengio ! Jeff Dean!
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