Improve the progress tracking of
Naiad (Timely Dataflow)

Victor
Nov 2020

Timely Dataflow

* Timely dataflow is a powerful dataflow framework (and under-
appreciated IMO)

e Supports both high-throughput batch processing and low-latency
stream processing

e Supports static cyclic graph
* Uses stateful workers with less fault tolerance capabilities
e Use timestamps for progress tracking and batch synchronization

e Still under active development and usage (by Differential Dataflow
and Materialize)

Personal interests

* Timely dataflow (and differential dataflow) is interesting and powerful
 Dissertation project involves combining Timely Dataflow and enclaves

 Shift some operators to enclaves to make them confidential on
untrusted cloud

e Additional opportunity to learn about the implementation
* (And also learn Rust)

What’s the problem here?

Progress tracking needs to be reigned in. #190
frankmesherry opened this issue on Sep 19, 2018 - 1 comment

£ frankmcsherry commented on Sep 19, 2018 - edited ~

Member @ Qoo

Recent measurements, using eintopf as a basis and grokking logs with this program reveals that by volume (bytes) there is a crap-
ton of progress traffic going on. As we increase the workers up to 32, the volume even dominates the amount of real data.

Naiad had exactly this problem and instituted several measures for optimizing the traffic, including switching to edge-based
transmission where accumulations are only sent out when discrete changes in the global frontier are observed, and aggregation at
various levels that makes this even more effective.

We should probably do the same thing... Sigh.

As examples, using four processes each with one worker produces communication channel by counts of

MESSAGE (11, (Root, Duration { secs:
MESSAGE (15, (Root, Duration { secs:
MESSAGE (22, (Root, Duration { secs:
MESSAGE (26, (Root, Duration { secs:

100,
100,
100,
100,

nanos:
nanos:
nanos:
nanos:

@ 1),
e 1),
@ 1),
e 1),

1799984)
98112480)
1065273136)
534406272)

where 26 is the progress channel and others are data channels.

As we increase the workers to 4x8 this increases to

MESSAGE (11, (Root, Duration { secs:
MESSAGE (15, (Root, Duration { secs:
MESSAGE (22, (Root, Duration { secs:
MESSAGE (26, (Root, Duration { secs:

1600,
108,
100,
108,

nanos:
nanos:
nanos:
nanos:

@ 1),
@ 1),
e 1),
@ 1),

1818912)
24392448)
162786032)
675490816

What’s the problem here?

Process 1 Process 2

Worker (thread) 1 Worker (thread) 2

Worker (thread) 3

What’s the problem here?

Channel 2

Process 1 Process 2

Worker (thread) 1 Worker (thread) 2
Pusher Receiver

What’s the problem here?

One Timely Dataflow logical channel
Channel 1 Channel 2 Channel 3 Channel 4

Process 1 Process 2

Receiver Pusher

Pusher . Receiver

Worker (thread) 1 S e \ Rushier Worker (thread) 3

Pusher ‘ / Pusher

Pusher V/l ‘. Pusher

Receiver I Pusher

Worker (thread) 2
Pusher

‘ Worker (thread) 4
\ Pusher

Pusher Receiver

What’s the problem here?

One Timely Dataflow logical channel
Channel 2 Channel 3 Channel 4

Process 1 Process 2

Worker (thread) 1 Worker (thread) 3

| Pointstamp | ~ushe ;

Receiver >

Worker (thread) 2 Worker (thread) 4

Pusher >

Pusher

What’s the problem here?

One Timely Dataflow logical channel
Channel 2 Channel 3 Channel 4

Process 1

Process 2

Worker (thread) 1

s Po!ntstamp] ; Worker (thread) 3
Pushe Pointstamp] Receive
A5 | Pointstamp | i

Worker (thread) 2

Receiver >

Worker (thread) 4
Pusher P

Pusher N oaraive

What’s the problem here?

Process 1

Worker (thread) 1

Worker (thread) 2

Receiver

Pusher
Pusher

One Timely Dataflow logical channel
Channel 2 Channel 3 Channel 4

Process 2

Worker (thread) 3

[Pointstamp Recelve

Pointstamp] g

Worker (thread) 4

[Pointstamp

What’s the problem here?

* If we have 4 processes and 8 workers....

MESSAGE (11, (Root, Duration { secs: 188, nanos: @ }), 1818912)

MESSAGE (15, (Root, Duration { secs: 188, nanos: @ }), 24392448)
MESSAGE (22, (Root, Duration { secs: 188, nanos: @ }), 1627860832)
MESSAGE (26, (Root, Duration { secs: 188, nanos: @ }), 675498816)

* Channel 26 here is the channel for progress update
* Other channels are for sending data

* Progress data is much larger than data actually used in dataflow
operators

What are the possible solutions?

* Timely Dataflow is slightly different from the original Naiad in C#
* Naiad has optimizations for reducing progress update traffic

* Hierarchically accumulate the updates at process or central
broadcaster level

* Worker level: Only send update when the updates are needed by other
workers to yield notifications (and results)

* Process level: Each process accumulate all updates from local threads and
process accumulators communicate progress updates with one another

* Cluster level: All worker updates are dispatched to a central accumulator, and
the central accumulator dispatch updates to all workers

Accumulate progress updates at each worker

* This solution has been implemented by Frank McSherry
* https://github.com/TimelyDataflow/timely-dataflow/pull/228

/// Sends local progress updates to all workers.
/1
/// This method does not guarantee that all of “self.local pointstamps™ are
/// sent, but that no blocking pointstamps remain
tn send _progress(&mut self) {
// If we are requested to eagerly send progress updates, or if there are
// updates visible in the scope-wide frontier, we must send all updates.
let must_send = self.eager progress_send || {
let tracker = &mut self.pointstamp_tracker;
self.local pointstamp.iter().any(|((location, time), diff)|
// Must publish scope-wide visible subtractions.
tracker.is global(*location, time) && *diff < @)

s

if must_send {
self.progcaster.send(&mut self.local pointstamp);

¥
}

 This optimization is not (well) evaluated and disabled by default
* Need some computations to evaluate this optimization

https://github.com/TimelyDataflow/timely-dataflow/pull/228

Accumulate progress updates at each process

One Timely Dataflow logical channel
Channel 2 Channel 3 Channel 4

Process 1

Worker (thread) 1

Worker (thread) 2

Process 2

Worker (thread) 3

Worker (thread) 4

Accumulate progress updates at each process

* No implementation yet

* Every group of workers now have shared progress updates
* Distributed append-only log

* Concurrency and correctness issue

e Performance issue due to message delay and inter-thread
synchronization

(My own) progress updates

e Read the Rust implementation (and learn Rust)

« Communication, scheduling, progress tracking and updates
* Find programs to evaluate the changes

* Implement the evaluation programs

* Implement my own changes

e Evaluate both changes on progress traffic volume and effect on
latency and throughput

* Wrap my change as an optional feature and submit a PR

Contingencies/add-ons

Optimize progress traffic for some operators #94

frankmcsherry opened this issue on Sep 1, 2017 - 0 comments

@ frankmcsherry commented on Sep 1, 2017 - edited ~ Member (©) -+

Several operators do not require progress traffic.

Progress information flows slowly #56

frankmcsherry opened this issue on Apr 15, 2017 - 0 comments

& frankmesherry commented on Apr 15, 2017 + edited ~ Member (&) ---

Not that slowly, not to worry. ;)

Discussion/Q&A

