RLGraph + PPG

Model-free RL

- Policy network: select the action to take
- Value network: predict the expected reward in current state

Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html. MIT-licensed, 2018.

Policy optimization

REINFORCE (1999)

- AKA Vanilla Policy Gradient
- Notable success: 2013 Atari
- Standard gradient ascent
- But small parameter changes might still harm performance
- A. Karpathy <u>implemented</u> it in 130 lines in numpy

Algorithm 1 Vanilla Policy Gradient Algorithm

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for k = 0, 1, 2, ... do
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Estimate policy gradient as

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \nabla_\theta \log \pi_\theta(a_t | s_t) |_{\theta_k} \hat{A}_t.$$

7: Compute policy update, either using standard gradient ascent,

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k,$$

or via another gradient ascent algorithm like Adam.

8: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm. 9: end for

Source: https://spinningup.openai.com/en/latest/algorithms/vpg.html

PPO (2017)

- Idea: disincentivise large changes in one step of policy improvement.
- One network approximates the policy and the value function (but this is not key to PPO)
- Updates are standard. In each step, loss looks at the old and new probability
- If the actual update is too big, loss treats it as if it changed only by ϵ *100%. Typically, ϵ = 0.2

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right)$$
$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0. \end{cases}$$

PPG (2020)

- Policy network:
 - Same as that used in PPO
 - Optimizing the *clipped surrogate function* with an entropy bonus
 - Has two heads: a policy head and an auxilliary value head
 - Parameters shared
- Value network:
 - Predicts the value given a state
 - Parameters distinct

Source: PPG paper

Training of PPG

• Policy phase:

- Estimate advantage function (GAE)
- Optimize the policy for clipped loss
- Optimize the value network w/ MSE

• Auxiliary phase:

- Auxiliary loss: MSE on target values.
- Joint loss = auxiliary loss + behavioural cloning (keeps policy).
- Optimize these two losses.

Algorithm 1 PPG	
for phase $= 1, 2, do$	
Initialize empty buffer B	
for iteration = $1, 2,, N_{\pi}$ do	▷ Policy Phase
Perform rollouts under current policy π	-
Compute value function target \hat{V}_t^{targ} for each	state s_t
for epoch = $1, 2,, E_{\pi}$ do	▷ Policy Epochs
Optimize $L^{clip} + \beta_S S[\pi]$ wrt θ_{π}	v *
for epoch = $1, 2, \dots, E_V$ do	▷ Value Epochs
Optimize L^{value} wrt θ_V	
Add all $(s_t, \hat{V}_t^{\text{targ}})$ to B	
Compute and store current policy $\pi_{\theta_{old}}(\cdot s_t)$ for a	all states s_t in B
for epoch = $1, 2, \dots, E_{aux}$ do	▷ Auxiliary Phase
Optimize L^{joint} wrt θ_{π} , on all data in B	-
Optimize L^{value} wrt θ_V , on all data in B	

 $L^{value} = \hat{\mathbb{E}}_t \left[\frac{1}{2} (V_{\theta_V}(s_t) - \hat{V}_t^{\text{targ}})^2 \right] \quad L^{aux} = \frac{1}{2} \cdot \hat{\mathbb{E}}_t \left[(V_{\theta_\pi}(s_t) - \hat{V}_t^{\text{targ}})^2 \right] \quad L^{joint} = L^{aux} + \beta_{clone} \cdot \hat{\mathbb{E}}_t \left[KL[\pi_{\theta_{old}}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)] \right]$

Results

- Tested on Procgen (which is an improved variation of Atari)
- Converges faster and learns better than PPO

Figure 2: Sample efficiency of PPG compared to a PPO baseline

RLGraph

Source: https://rlgraph.github.io/rlgraph/2019/01/04/introducing-rlgraph.html

RLGraph

Source: https://rlgraph.github.io/rlgraph/2019/01/04/introducing-rlgraph.html

Goals

- Reimplement the PPG in RLGraph
- Benchmark performance of PPG in RLGraph on Atari and Gym scenarios

