
QTune: A Query-Aware Database Tuning
System with Deep

Reinforcement Learning

Paper review by Victor

Structure

1. Motivations

2. How QTune works

3. Results

4. Review

Motivations

• Automatically find the best config for database

• Minimize latency

• Maximize throughput

• Individual queries or groups of queries

Existing solutions

• BestConfig, OtterTune, CDBTune

• Need large volume of high-quality training data

• Coarse-grained tuning for queries (Read-only, entire workload etc…)

• Doesn’t consider both actions and queries change the environment

QTune - Overview

• Query tuning
• Minimizes latency

• Workload tuning
• Maximizes throughput

• Cluster tuning
• Group queries into different clusters

• Optimal latency-throughput trade-off

• RL: Double-State Deep Deterministic Policy Gradient (DS-DDPG)

QTune - Overview
Query2Vector

Pattern2Cluster

QTune – Query Featurization

• “Query2Vector” in paper

• Turn a query into a feature vector

• Query type (Select, insert, update, delete) 4-bits of boolean flags

• Tables involved |T|-bits of boolean flags

• No operations (join, groupby etc…)!

• Cost information from query plan (from query optimizer) |P| floats

• Sum up the cost for each operation and normalize

• Unify multiple feature vectors into one:
• Union query types (bitwise OR)
• Sum up tables (?)
• Sum up costs

QTune – Query Featurization

QTune – DS-DDPG

• Double state: both inner state

and outer metrics

• DDPG solves the problem of

infinite actions (continuous config

values)

• Predictor is also DL model

• 3) Predicts change in outer

metrics but not the next set

of actual metrics (S’ = S + S)

QTune – DS-DDPG – Predictor

• Training data: [(query feature vector, outer metrics, inner state,
change in S)]

• Four fully connected layers

• ReLU in hidden layers

• MSE for loss function

QTune – DS-DDPG – Actor-Critic

• Training data: [(S’, Action, Reward)] from list of queries

• Update actor policy with gradient of Q-value and state

• Estimate actual state-action value with Bellman equation, reward and
Q-value

• Calculate loss with squared error

QTune – DS-DDPG – Reward function

1. Define percentage changes

2. Calculate a specific metric m

3. Weighted mean for combining multiple metrics into reward R

4. (Same as CDBTune)

QTune – Query clustering

• DS-DDPG has access to the configs tried for a specific query

• But expensive to use DS-DDPG to get continuous values

• Turn continuous values into discrete values like {-1, 0, 1}

• Only use the top-k frequently changed configs

• Again train a DL model to map queries to discrete config pattern vectors

• Training data: [(query vector, discrete recommended config from DS-
DDPG)]

• Use DBSCAN (clustering algorithm) to group the discrete config vectors

Evaluation and results

• Evaluation on QTune techniques and internals

• Evaluation on config tuning as compared to existing methods

• Evaluation on ability to generalize with changes in a few factors

• Single machine with 128GB RAM, 5TB disk, and 4GHz CPU

• Huawei Gauss Database

Evaluation and results – QTune

• Three tuning methods

• Throughput: Cluster > Workload > Query

• Latency: Query > Cluster > Workload (> means better)

Evaluation and results – QTune

• Running time

• Low overhead during running time (and probably only running time)

Evaluation and results – Comparison with others
• BestConfig, OttorTune, CDBTune, and database admins

Evaluation and results – Comparison with others

• QTune achieves the highest throughput and lowest latency

• Better than CDBTune because CDBTune only has outer metrics in
environment

Evaluation and results – Adaptability to changes

• Use models trained with one workload to tune PostgreSQL under
another workload

• QTune performs the best because it takes queries into account

Evaluation and results – Adaptability to changes

• Evaluate QTune on different databases

• QTune outperforms other methods

Review

• Improvement upon CDBTune

• The lead author (Li) was involved in CDBTune

• Difference is query featurization, clustering according to pattern, and
predictor model

• But makes the whole system really complicated (2 + 2 + 1 = 5 models)

• Probably takes a long time to train and tune the system itself

Discussion

