
TASO: Optimizing Deep
Learning Computation with

Automatic Generation of Graph
Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd
Warszawski, Matei Zaharia, Alex Aiken

Presented by: Samuil Stoychev

Graph Substitutions

Mapping

Source graph Target graph

• DNNs are represented as
computation graphs combining
multiple operators.

• A substitution is a mapping from
a source graph to a target graph.

• We want a target graph that is
functionally equivalent and that
has better performance.

Existing Solutions

• All use a greedy rule-based
approach.

• Substitution heuristics manually
designed by human experts.

Existing Approach

Manually designed
graph substitutions

Graph
Substitution

Optimizer

Data Layout
Optimizer

*Diagram adapted from Z. Jia et al., 2019

Existing Approach

Manually designed
graph substitutions

Graph
Substitution

Optimizer

Data Layout
Optimizer

Input graph

Output graph

*Diagram adapted from Z. Jia et al., 2019

Problems With Current Solutions

• Maintainability
• Manually writing substitutions is time-consuming.
• TensorFlow’s 155 substitutions implemented in ~53K lines of code.
• Hard to add new operators.

• Data layout
• Graph substitutions and data layout are interconnected.
• However, current approaches treat them as isolated optimization problems.

• Correctness
• Hard-coded substitution rules are error-prone.
• No verification mechanism to validate substitutions.

TASO (Tensor Algebra SuperOptimizer)

• Automatic generation of graph substitutions.

• Formal verification of generated substitutions.

• Joint optimization over graph substitution and data layout.

TASO’s Approach

Operator
specifications Graph Substitution

Generator

*Diagram adapted from Z. Jia et al., 2019

…

TASO’s Approach

Operator
specifications Graph Substitution

Generator
Graph Substitution

Verifier

*Diagram adapted from Z. Jia et al., 2019

… …
✓

✗

Verified
Substitutions

…

TASO’s Approach

Operator
specifications Graph Substitution

Generator
Graph Substitution

Verifier

*Diagram adapted from Z. Jia et al., 2019

… …
✓

✗

Verified
Substitutions

…

Joint Optimizer
(Graph Substitution

+ Data Layout)

TASO’s Approach

Operator
specifications Graph Substitution

Generator
Graph Substitution

Verifier

Input graph
Output
graph

*Diagram adapted from Z. Jia et al., 2019

… …
✓

✗

Verified
Substitutions

…

Joint Optimizer
(Graph Substitution

+ Data Layout)

Graph Substitution Generator

Operator
specifications Graph Substitution

Verifier

Input graph
Output
graph

*Diagram adapted from Z. Jia et al., 2019

…
✓

✗

Verified
Substitutions

…

Joint Optimizer
(Graph Substitution

+ Data Layout)

Graph Substitution
Generator

…

Graph Substitution Generator

1. Enumerate all possible graphs with up
to N operators using depth-first-search.

2. Run the generated graphs on test inputs
and obtain their fingerprints by hashing
their outputs.

3. Maintain a dictionary 𝐷 mapping
𝐹𝑖𝑛𝑔𝑒𝑟𝑃𝑟𝑖𝑛𝑡 𝐺 ↦ 𝐺.

4. Iterate over fingerprints in 𝐷 and return
all pairs (𝐺!, 𝐺") with identical
fingerprints.

Available operators

…

Test
inputs

Test
inputs

Test
inputs

Test
inputs

Outputs

Fingerprint

Outputs

Fingerprint

Outputs

Fingerprint

Outputs

Fingerprint

Graph Substitution Verifier

Operator
specifications

Input graph
Output
graph

*Diagram adapted from Z. Jia et al., 2019

Verified
Substitutions

…

Joint Optimizer
(Graph Substitution

+ Data Layout)

Graph Substitution
Generator

…

Graph Substitution
Verifier

…
✓

✗

Graph Substitution Verifier

• Use a theorem prover to verify the generated substitutions satisfy
operator properties defined in first-order logic.

• 43 operator properties defined in TASO including:
• ∀𝑥. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑥 = 𝑥
• ∀𝑥.𝑚𝑎𝑡𝑚𝑢𝑙 𝑥, 𝐼!"#!$% = 𝑥

• ∀𝑥, 𝑦, 𝑧.𝑚𝑎𝑡𝑚𝑢𝑙 𝑥,𝑚𝑎𝑡𝑚𝑢𝑙 𝑦, 𝑥 = 𝑚𝑎𝑡𝑚𝑢𝑙 𝑚𝑎𝑡𝑚𝑢𝑙 𝑥, 𝑦 , 𝑧

• Additional validation steps
• Testing operator properties on small tensors.

• Checking if operator properties are consistent.

Pruning Redundant
Substitutions

• A substitution is redundant if it can be
inferred from another valid substitution.

• Pruning strategies in TASO:
• Input tensor renaming
• Common subgraph

• Pruning reduces the number of verified
substitutions in TASO by 39 times.

Joint Optimizer

Operator
specifications Graph Substitution

Verifier

Input graph
Output
graph

*Diagram adapted from Z. Jia et al., 2019

…
✓

✗

Verified
Substitutions

…

Graph Substitution
Generator

…

Joint Optimizer
(Graph Substitution

+ Data Layout)

Joint Optimizer

• Layouts of input tensors (A,
B) and output tensor (X) are
fixed.

• But we can change the
layout of intermediate
tensors.

Joint Optimizer

• Using cost-based backtracking
search defined by MetaFlow.

• Extended by TASO to account to
account for different possible data
layouts.

• The 𝛼 parameter controls the
search space. (𝛼 = 1.05 in TASO)

Implementation

• TASO implementation includes 12 operators and 43 operator
properties.

• Built on top of MetaFlow
• 8000 lines of code in total.

• 1400 lines for operator reference implementations + operator properties.

• Framework-agnostic.

Evaluation Setup

• Evaluated on optimizing 5 deep neural networks:

• Substitution generation:
• Enumerated graphs with up to 4 operators.

• Generated 743 verified substitutions.

• ResNet-50
• ResNeXt-50
• NasNet-A

• NasRNN
• BERT

Performance Comparison

• Compared against TensorFlow, TensorRT, MetaFlow, TVM both on
the cuDNN and TVM backends.

Why Does TASO Perform Better?

• Different architectures require different substitutions.

• Old heuristics do not necessarily apply to new models.

Why Does TASO Perform Better?

• Joint optimization compared with:
• Only graph substitution optimizations.

• Only data layout optimizations.

• Sequential optimization.

• Joint optimization reduces execution
time by 12% compared to sequential
optimization.

Review

Strengths

• Novel approach to optimizing DNNs via graph substitutions.

• Evaluation demonstrates clear improvement in performance.

• Good presentation of motivations and findings.

Potential Improvements

• Approach does not scale beyond graphs of 4 operators.

• No evaluation of system performance (e.g. memory consumption).

• Evaluation done only on a single machine.

Impact

• TASO builds on the findings of the MetaFlow paper:
• https://theory.stanford.edu/~aiken/publications/papers/sysml19b.pdf

• TASO is publicly available on GitHub.
• https://github.com/jiazhihao/TASO

https://theory.stanford.edu/~aiken/publications/papers/sysml19b.pdf
https://github.com/jiazhihao/TASO

Thank you for the
attention!

