(Hierarchical)
Device
Placement
Optimization
with RL

How RL doubled the speed

of runnin g TensorFlow graph
on multiple GPUs.

I Two papers

Device Placement Optimization with Reinforcement Learning

Azalia Mirhoseini ' > Hieu Pham " '?> Quoc V. Le' Benoit Steiner' Rasmus Larsen' Yuefeng Zhou'
Naveen Kumar® Mohammad Norouzi' Samy Bengio' Jeff Dean'

Abstract

The past few years have witnessed a growth in
size and computational requirements for training
and inference with neural networks. Currently, a
common approach to address these requirements
is to use a heterogeneous distributed environ-
ment with a mixture of hardware devices such
as CPUs and GPUs. Importantly, the decision
of placing parts of the neural models on devices
is often made by human experts based on simple
heuristics and intuitions. In this paper, we pro-
pose a method which learns to optimize device
placement for TensorFlow computational graphs.

Key to our method is the use of a sequence-to-
sequence model to predict which subsets of op-
erations in a TensorFlow graph should run on
which of the available devices. The execution
time of the predicted placements is then used as
the reward signal to optimize the parameters of
the sequence-to-sequence model. Our main re-
sult is that on Inception-V3 for ImageNet classi-
fication, and on RNN LSTM, for language mod-
eling and neural machine translation, our model
finds non-trivial device placements that outper-
form hand-crafted heuristics and traditional algo-
rithmic methods.

Submitted as a conference paper to ICLR 2018

A HIERARCHICAL MODEL FOR DEVICE PLACEMENT

Azalia Mirhoseini*, Anna Goldie®, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean
{azalia, agoldie, hyhieu,bsteiner,gvl, jeff}@google.com

ABSTRACT

We introduce a hierarchical model for efficient placement of computational graphs
onto hardware devices, especially in heterogeneous environments with a mixture of
CPUs, GPUs, and other computational devices. Our method learns to assign graph
operations to groups and to allocate those groups to available devices. The grouping
and device allocations are learned jointly. The proposed method is trained with
policy gradient and requires no human intervention. Experiments with widely-used
computer vision and natural language models show that our algorithm can find
optimized, non-trivial placements for TensorFlow computational graphs with over
80,000 operations. In addition, our approach outperforms placements by human
experts as well as a previous state-of-the-art placement method based on deep
reinforcement learning. Our method achieves runtime reductions of up to 60.6%
per training step when applied to models such as Neural Machine Translation.

Plan

o A W N =

. A high-level overview

Initial RNN-based method (ColocRL)
Improved, hierarchical method
Experimental data

Experimental setup

Results

1. A high-level overview

Multi-device NN experiments. Need to split computation graphs
across CPUs/GPUs. Past: humans/heuristics. Now: RL.

Initial method involves
the RNN-Attention model

Placement ! Emvironment |}———————p Runtime

* Improvement - hierarchical model
* Optimization based on
. Update
measurements of real-life runs Pacement
* Both models more successful _ | |
Figure I. An overview of the RL based device placement model

than most prior approaches
Figure from Mirhoseini et al. 2017

. 1.1.Goal

Consider a TensorFlow computational graph G, which con-
sists of M operations {0y, 05, ..., 057 }, and a list of D avail-
able devices. A placement P = {p;.p2,....par} is an
assignment of an operation 0; € G to a device p;, where
pi € {1,...,D}. Let r(P) denote the time that it takes to
perform a complete execution of G under the placement P.
The goal of device placement optimization is to find P such
that the execution time 7(7P) is minimized.

Definition from Mirhoseini et al. 2017

2. RNN-based method (ColocRL)

* Input: list of graph operations, e.g. matmul, conv2d, pool2d.
Output: matching of graph operations to devices.

e Encoder-Decoder architecture.

* Encoding of a graph operation type and output shapes
is fed to the attentional LSTM.

* Decoder: Attentional LSTM selects a device for each
operation. Encoding of a selected device then fed to LSTM.

2.1 Architecture of the ColocRL

Devica Davice Dewica
Softmax foropl | forop2 P i’ for opl00
] i
1 h, . 1 ~
1] 1
1 i |
Attention 1 A i
L]]]
|] 1
i | i
Hidden = . . " J » Y '
t [* = " = * 1 ¥ i [_1_1.
state 3 r s 1 i L [i ~
T i i i
\ \ i
Embedding || oces | ™ e | e [e | e [\ \ '
L]] L]
1 1 ! "] vt "
; % § L1 F L]]
opl op2 aploo N " N
Figure 2. Device placement model architecture.

Figure from Mirhoseini et al. 2017

2.2 Co-location groups

« Co-locating operations: some ops batched together
» Outputs with gradients
* Only consumer of some layer's outputs, with the producer
» Convolutions with pooling
« LSTM group elements

« Aim: reduce dimensionality of search space.
« RNNLM: from ~9k to 188
* NMT: from ~22k to 280
* Inception-v3: from ~30k to 83

« Co-location is a hard assumption and significant constraint!

Plan

I

A high-level overview
Initial RNN-based method (ColocRL)

. Improved, hierarchical method

Experimental data
Experimental setup

Results

3. An improved, hierarchical model

« Two sub-networks, trained jointly:

» Grouper:
* Splits operations into groups
* Performs embedding on each group, pushes embeddings to Placer

* Implemented as a simple feedforward network with a softmax layer

e Placer

» Assigns groups to devices

* Implemented as a Seq25Seq model with LSTM and Attention.

3.1. lllustration of a hierarchical model

'/I;Iacer Device for Device for Device for \
Softmax h \
group 1 group 2 | group 10
1 |
Iy | A \ \ Iy
I I |
| I I
Attention 1 | |
| | |
1 | |
I I |
L— LS]
]
state 7y il X || N ¥
I] I
| [|
. average average average \ \ |
Embedding of group 1 of group 2 of group 10 go \ \ \
embedding embedding embedding \
A A
}\ - =F .= v /
A - - <
v e - "
/Eirouper LenT P . \
- A - - -
- = Y .- - S
group group group group
Softmax id id id d
7 7 7 K
. output output output output
Embedding WYPe | chapes ad) WP | chapes adj WPe | chapes ad) P shapes adj
_ opl op2

op3

0p10000

Figure from Mirhoseini et al. 2018

Plan

o Uk W=

A high-level overview
Initial RNN-based method (ColocRL)

Improved, hierarchical method

. Experimental data

Experimental setup

Results

4. Experimental data

Recurrent Neural Network Language Model (RNNLT)
* Many LSTM models
* Grid-based architecture

Neural Machine Translation with attention (NMT)

* Many hidden states
 Originally, LSTM, Attention and Softmax separate

Inception-V3 (used for computer vision)
» Block-based architecture
» Block comprises convolutional and pooling layers

ResNet (used for computer vision, only benchmarked with Hierarchical)

5. Experimental Setup

 RL algorithm: REINFORCE (a vanilla policy gradient method)
* Optimizer: Adam / RMSProp

 Devices:
* ColocRL: Intel Haswell 2300 CPU + 1-8 Nvidia Tesla K80 GPU
e Hierarchical: Intel Haswell 2300 CPU + 1-8 Nvidia Tesla K40 GPU

e Tensorflow versions different

5. Distributed & asynchronous training

o Up to 20 ContrO”erS Parameter Server

.

Controller 1 Controller 2 e Controller K

Figure 3. Distributed and asynchronous parameter update and re-

« 4-8 workers per controller
* Training takes 12-27h

ward evaluation.

Figure from Mirhoseini et al. 2017

6. Benchmarks

e Single-CPU
* Single-GPU.
* If operation has no GPU implementation, run on CPU

* Scotch - a 2009 heuristic-based graph execution optimizer

e MinCut - Scotch without CPU.
* No GPU-based op - use CPU.

* Expert design

6. Results

Tasks Single-CPU Single-GPU | #GPUs Scotch MinCut Expert | RL-based Speedup
RNNLM 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) 6.59 17 - 11.52 10.44 4.46 1.57 0.0%
NMT 2 14.19 11.54 4.99 4.04 23.5%
(batch 64) 172 00N - 11.23 11.78 4.73 3.92 20.6%
Inception-V3 2621 4.60 2 2524 2288 11.22 | 4.60 0.0%
(batch 32) T] - 2341 2452 10.65 | 3.85 19.0%
Tasks CPU GPU | #GPUs Human Scotch MinCut Hierarchical Runtime
Only Only Expert Planner Reduction
Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%
ResNet - .18 2 1.18 6.27 2.92 1.18 0%
RNNLM 6.89 [.57 2 1.57 J.62 5.21 1.57 0%
NMT (2-layer) | 6.46 OOM 2 2.13 3.21 5.34 0.84 60.6%
NMT (4-layer) | 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%
NMT (8-layer) | 11.52 OOM 8 3.88 17.85 19.01 4.07 -4.9%

Figures from Mirhoseini et al. 2017 (top), Mirhoseini et al. 2018 (bottom)

0 RL-based pla-;cmcnt_ I:'x_pcrt-dc_signcd placcmcnl

6. Placements in ColocRL

1.0k

BERE::!:

[ul"'l o GPUL GPU2Z GPUZ GrUo GPUL GPUZ GPU3

npemtion runtime (s)

B cncoder Istm(grad) WM attention(grad)
[decoder lstm(grad) B softmax(grad)

Figure 5. RL-based placement of Inception-V3. Devices are denoted by colors, where the transparent color represents an operation on a
CPU and each other unique color represents a different GPU. RL-based placement achieves the improvement of 19.7% in running time
compared to expert-designed placement.

Figures from Mirhoseini et al. 2017

. Placements in Hierarchical

-
%
"
o~
L)
°©
b

Softmax

Attention

-
-
. <
.=
. ~
F

£ g
=

LSTM Layer 4 LSTM Layer 4

LSTM Layer 3 LSTM Layer 3

ks
LSTM Layer 2 III

LSTM Layer 1

LSTM Layer 2

=
b

=

y=h=h=l={=0—
e
EAREREE
mEssma
S E

LSTM Layer 1

Embedding Embedding

Encoder Decoder
Figure 2: The Hierarchical Planner’s placement of a NMT (4-layer) model. White denotes CPU and
the four colors each represent one of the GPUs. Note that every step of every layer is allocated across
multiple GPUs. This placement is 53.7% faster than that generated by a human expert.

Figure from Mirhoseini et al. 2018

Summary

* Both ColocRL and Hierarchical substantially improve on prior
work in device placement

* Effective device placement requires prior grouping of operations
* In ColocRL grouping is handpicked, in Hierarchical automated
* Both ColocRL and Hierarchical introduce novel ideas

* Hierarchical seems to be faster, but there's no direct benchmark

Credits + Q&A

e Azalia Mirhoseini*, Hieu Pham?*, Quoc V. Le, Benoit Steiner,
Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad
Norouzi, Samy Bengio, Jeff Dean: Device Placement
Optimization with Reinforcement Learning (2017)

* Azalia Mirhoseini*, Anna Goldie* , Hieu Pham, Benoit Steiner,
Quoc V. Le and Jeff Dean: A Hierarchical Model for Device
Placement (2018)

 Presented by F. Budrowski, for the 2020 R244 Cambridge class

