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Background

• Publication: WWW '17: Proceedings of the 26th International 
Conference on World Wide Web.

• April 2017
• Developed as part of Valentin Dalibard’s PhD:

• https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-900.pdf
• Very approachable intro to Gaussian Processes & Probabilistic Programming.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-900.pdf


Problem

• Modern computer systems often have configuration parameters.
• Auto-tuning is the process of optimising the setting of these 

parameters to improve performance through automated search.
• Evaluating the success of a configuration often expensive.
• Space of configurations is often too large for tractable exploration.
• Common approaches to dealing with high dimensional search spaces 

require too many samples.
• Bayesian optimisation techniques effective in this area:

• Efficiently utilise a small number of iterations
• Suffer from the curse of dimensionality.



BOAT Overview

• This paper proposes Structured Bayesian Optimisation as a solution.
• SBO benefits from the efficient utilisation of samples from BO
• Reduces search space by leveraging structural information about the 

underlying system – bespoke approach.
• BOAT is evaluated against other optimisation approaches and 

demonstrates significant improvements in: 
• Effectiveness
• Time to convergence



Intro

• Configuration Space: Compiler Flags, Workload Allocations.
• Models implemented using BOAT library probabilistic C++
• Runtime metrics used for inference:

• Performance metric
• Individual parameterisations: Communication time, Device performance



Motivation

• Expense of Evaluation – Minutes:
• Evolution / Reinforcement approaches require thousands of iterations
• For Garbage Collected case: SBO 2 iterations vs BO 16 iterations

• Curse of Dimensionality:
• 10 machines, 3 parameters per machine, 30 parameters
• BO (only in low dimensional spaces) due to complexity of underlying GP and 

numerical approximations.



Bayesian Optimisation

• For Objective Function 𝑓𝑓, min𝑓𝑓 𝑥𝑥 by constructing a probability 
distribution over the set of possible functions. Update with samples.

• Common to model distribution as a Gaussian Process (a multivariate 
normal distribution), which is unique charactered by a mean vector 
and a covariance kernel.

• Three Steps:
• Sample - Numerical Optimisation
• Evaluate - Expensive
• Update - Bayesian Updating



Structured Bayesian Optimisation

• Objective Function isn’t an arbitrary function, has known structure
• Leverage this known structure to reduce the configuration space
• Replace GP from BO with structured probabilistic model of a system.
• Begin with GP -> Incrementally add structure.
• Garbage Collection Example:

• Configuration: Young generation size, Survivor ratio & Tenuring threshold
• Goal: Minimise the 99% percentile latency
• Attempt with GP, add notion of average duration of minor collection…
• Small amounts of structure sufficient for large improvement in convergence.



BOAT Models

• Specify the configuration space (Compiler Flags, Device Scheduling…)
• Specify the target performance metric (Runtime, Latency)
• Runtime measurements (Metric, Parametric Model Targets)
• Specify probabilistic system behaviour model…



Semi Parametric Models

• Combination of parametric (fixed) & non-parametric (non-fixed) models
• Idea properties of model for optimization problems:

• It should understand the general trend of the objective function to avoid exploring low 
performance regions.

• It should have high precision in the region of the optimum, to find the point with highest 
performance. 

• “The non-parametric model is used to learn the difference between the parametric 
model and the observed data.”



BOAT Design 

• Models in BOAT are assembled from sub-models.
• Models should be Compartmentalised, each sub-model responsible 

for predicting a single observable value. 
• Using a Directed Acyclic Graph for independence -> similar 

conditional independence properties to Bayesian Network!
• Each sub-model is semi-parametric.



BOAT Semi Parametric Model Implementation
• BOAT library Probabilistic C++
• Constructor: Instantiates parameters by sampling from initial prior:

• Parametric model parameters
• Gaussian Process parameters

• Parametric function returns prediction



Global Model

• Directed Acyclic Graph.
• DAGModel Class Defines Dataflow



Evaluation Summary

• Demonstrates benefit of Auto-Tuning Approach
• Demonstrates benefit of SBO vs BO (OpenTuner & Spearmint)

• Garage Collection Demonstration
• Neural Network Optimisation



Garbage Collection Results

• Tuning: young generation size, survivor ratio and max tenuring 
threshold flags, of Cassandra JVM. Small Parameter Space.

• Objective Function: Minimise 99% latency
• Model:

• Results: Converged in 2 iterations vs 16



Neural Network

• Workload balancing using distributed TensorFlow.
• Configuration: choosing workers & parameter servers, partitioning workload 

among heterogenous machines, choosing the batch size. 
• Workers & Parameter Servers: 

• Parameter Server tasks synchronize the gradients at every iteration and update the 
parameters.

• Worker tasks compute the gradient estimates. 
• Partitioning Workload:

• Choosing workload for each machine including CPU vs GPU distribution.
• Batch Size for Stochastic gradient descent:

• Higher Batch Size allows for more parallelism
• Lower Batch Size tends to produce better accuracy

• Approximately 32 Parameters for 10 Machine setup



Neural Networks

• Objective Function: Average time of previous 10 SGD iterations
• Model: 

• Individual device (CPU / GPU) computation time: ∝ Assigned Workload
• Individual machine computation time: Parametric component modelled sum 

of individual device computation time, non parametric component modelled 
gradient aggregation time.

• Communication time for cluster:
• Total SGD iteration time is then a function of communication time and the 

maximum individual machine computation time.



Neural Networks

• Performance:



Previous Work

• None-Structured Bayesian Optimisation
• System Auto-Tuning – BOAT extends to new domains.



Discussion
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