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Background — Prior work

* Put entire graph representation in DRAM
* Large shared memory with multi-core CPU on one machine
* Distributed memory on multiple machines

e Optimize data access across machines via graph partitioning strategy
and data locality

* Multiple GPUs on one machine



Background — Limitations of existing CPU-based approaches

* GPU has much larger memory access bandwidth than CPU

* CPU memory hierarchy and GPU memory hierarchy is different so
cannot directly use CPU distributed memory systems
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Figure 1: Multi-GPU node architecture.




Background — Limitations of existing GPU-based approach

* Only works only on one GPU/one machine
* Slow memory access from DRAM



Lux — programming model

e Similar to Pregel, Gather-Apply-Scatter concepts

* Vertex-centric algorithms
 VVertex contain mutable (in terms of algorithm reasoning) states
e Edges do not contain states AND topology cannot change

interface Program(V, E) {
void init(Vertex v, Vertex v°%%);
void compute(Vertex v, Vertex i
Edge e);
bool update(Vertex v, Vertex v

}
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Lux — programming model

* Pull vs push
* (Graphs are all directed!)
 Pull allows a vertex’s compute() to get state updates from all in-edges

* Push allows a vertex’s compute() to push state updates from itself to
all out-edges
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Lux — programming model

Algorithm 2 Pseudocode for generic push-based execution.
Algorithm 1 Pseudocode for generic pull-based execution. 1: while F # {} do

: 2 for all v € V do in parallel
1: while not halt do 3. imit(p; 6°%)
2 halt = true > halt is a global variable 4:  end for
. for all v do in parallel 2 > synchronize(V)
Z. 75 € (}l/d P 6: for all u € F do in parallel
: init(v, v") . 7 for all v € N*(u) do in parallel
D: for all u € N_(’U) do in parallel 8: compute(v, u®?, (u,v))
6: compute(v, u” " (u,v)) 9: end for
10: end for
7: end for e
8: if update(v, v*'?) then 12:  F={)
9: halt = false 13: for all v € V do in parallel
10: end if 14: if update(v, v°') then
15: F=FU {v}
11: end for 16 end if
12: end while 17: end for

18: end while




Runtime system — Graph partition

* Try to put whole representation into GPU

* (Spillover in DRAM zero-copy memory)

* Edge partitioning: each partition holds roughly the same no. of edges
 Also, each partition holds vertices with consecutive ranges of IDs

* Partition contains all edges that point to a vertex within the partition

* Consecutive IDs cause memory access to have higher chance of being
consecutive, and GPU memory hardware can coalesce multiple
individual accesses into one range access (?)



Runtime system — Graph partition

* Each partition has , a set of all neighbours that
point to some vertex in that partition
* Each partition has , a set of all vertices within

the partition which is pointed at by some neighbours
* ONS is the vertices contained in the partition if using edge partitioning



Runtime system — Task execution

* All vertex mutable states are in DRAIM zero-copy memory
* Copy vertices state of INS set to device memory



Runtime system — Task execution — Pull-based

* One kernel for all three stages

* One thread for one vertex to execute init() and update(), which
enables coalesced memory access

* (Split the vertices into groups) and use a thread block for each group

* Thread block cooperatively execute the compute() functions for
vertice group to even out edge count imbalance

* Thread block only change vertices states within their group, updates
stored and aggregated in (don’t have to write back to
slower )



Runtime system — Task execution — Push-based

* One kernel for each stage

* One thread for one vertex to execute init() and update(), which
enables coalesced memory access

* One thread for each vertex in the INS to execute compute()

* “In the push model, since threads may potentially update any vertex,
all updates go to device memory to eliminate race conditions and

provide deterministic results. “ (?)

* All updates present in are write back to
so that updates are visible to all GPU (and external nodes)



Runtime system — Data synchronization

* Each node compute the vertices that it needs but are on remote nodes

Union of INS of all partitions (on a node) \ union of
ONS of all partions

* Then send/receive states for these nodes



Runtime system — Dynamic repartitioning

* Measures the actual execution time of each partition

e Calculate the need for repartitioning based on heuristics derived from
statistics of execution time

* Then assumes that execution time of each vertex is proportional to its
number of in-edges and calculate a better partition boundary (while
maintaining the property that vertices IDs within each partition are
still continuous)

* Then moves data around if boundaries changed
* Use same method to repartition within each node



Performance modelling

e Estimate the execution time based on parameters
* Number of nodes

* Number of GPUs per node

* Size of INS of each partition

e Size of UDS of each node



Performance modelling — Pull based

* Load time proportional to sum of |INS| / number of nodes

* Compute time proportional to total edge count / total number of
partitions

* Intra-node data transfer time is ignored because update can be done
once a vertex’s compute() functions have all executed and it overlap

with compute()
e Data synchronization time is proportional to sum of |UDS|



Performance modelling — Push based

* Load time combined with compute() time, where loading data
overlaps with compute() kernel

* Compute() is executed by a thread as long as vertex state of INS is
transferred to

* Compute time proportional to total edge count / total number of
partitions

* Intra-node data transfer is ignored because it is significantly shorter
than compute()

e Data synchronization time is proportional to sum of |UDS|



Implementation details — Loading input

e Pull model: kernel on each GPU load data from

* Push model: CPU coalesce vertices and then GPU kernels copies
coalesced data from

* Because Push model overlaps loading data with compute

(a) GPU kernel approach. (b) CPU core approach.
Figure 13: Different approaches for loading input data.



Implementation details — Coalescing memory access

e Use arrays for storing vertex states (such as vectors)
e Use cooperative threads to load vectors onto

e Use individual thread for processing a single edge
 Best of both world



Implementation details — Cache optimisation

* Copy data from zero-copy memory to device memory

* Cache and aggregate local vertex update in GPU shared memory
within a thread block



Evaluation — Comparison with other frameworks

* PageRank, connected components, single-source shortest path,
betweenness centrality, and collaborative filtering

* On-par with others for single GPU implementation
e Superior performance for distributed multi-CPU and multi-GPU
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Figure 16: The execution time for different graph processing frameworks (lower is better).




Evaluation — Others

* Dynamic repartitioning is expensive for first few iterations but
becomes small thereafter

* Push model performs better than pull model for algorithms where
not all vertices are active
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Personal opinions

e Paper was hard to follow

* Lux is an evolution from existing ideas

* Programming model is essentially the same as Pregel, GAS
* Multi-GPU comes from Groute

* Performance gain comes from cores within a GPU and from fast
memory access on device memory

* Distributed systems enhancements: fault tolerance, or dealing with
scheduling
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