(Lux) A distributed multi-GPU system for
fast graph processing

Victor
Oct 2020

Background — Prior work

* Put entire graph representation in DRAM
* Large shared memory with multi-core CPU on one machine
* Distributed memory on multiple machines

e Optimize data access across machines via graph partitioning strategy
and data locality

* Multiple GPUs on one machine

Background — Limitations of existing CPU-based approaches

* GPU has much larger memory access bandwidth than CPU

* CPU memory hierarchy and GPU memory hierarchy is different so
cannot directly use CPU distributed memory systems

CPU
Registers
Smaller. £ cycles Larger, L Zero-Copy Memory 7 L Zero-Copy Memory j
faster access, L1 Cache Slower, | |
more expensive ~8-32 cycles Cheaper PCl-e Switch / NVLink PCl-e Switch / NVLink
L2 Cache
~300 cycles v Device Memry] Device Memmyw Device Memory | @
i \ N

Memor‘y‘ Shared Shared Shared Shared
Memary Memory Memaory Memory
~50,000 cycles \ 1)\l 1)

Hard Disk Compute Node Compute Node
Figure 1: Multi-GPU node architecture.

Background — Limitations of existing GPU-based approach

* Only works only on one GPU/one machine
* Slow memory access from DRAM

Lux — programming model

e Similar to Pregel, Gather-Apply-Scatter concepts

* Vertex-centric algorithms
 VVertex contain mutable (in terms of algorithm reasoning) states
e Edges do not contain states AND topology cannot change

interface Program(V, E) {
void init(Vertex v, Vertex v°%%);
void compute(Vertex v, Vertex i
Edge e);
bool update(Vertex v, Vertex v

}

old)

Lux — programming model

* Pull vs push
* (Graphs are all directed!)
 Pull allows a vertex’s compute() to get state updates from all in-edges

* Push allows a vertex’s compute() to push state updates from itself to
all out-edges

(:)::::::::::::::: +3 | :)
Compute() @ +3 Compute() @

Pull Push

Lux — programming model

Algorithm 2 Pseudocode for generic push-based execution.
Algorithm 1 Pseudocode for generic pull-based execution. 1: while F # {} do

: 2 for all v € V do in parallel
1: while not halt do 3. imit(p; 6°%)
2 halt = true > halt is a global variable 4: end for
. for all v do in parallel 2 > synchronize(V)
Z. 75 € (}l/d P 6: for all u € F do in parallel
: init(v, v") . 7 for all v € N*(u) do in parallel
D: for all u € N_(’U) do in parallel 8: compute(v, u®?, (u,v))
6: compute(v, u” " (u,v)) 9: end for
10: end for
7: end for e
8: if update(v, v*'?) then 12: F={)
9: halt = false 13: for all v € V do in parallel
10: end if 14: if update(v, v°') then
15: F=FU {v}
11: end for 16 end if
12: end while 17: end for

18: end while

Runtime system — Graph partition

* Try to put whole representation into GPU

* (Spillover in DRAM zero-copy memory)

* Edge partitioning: each partition holds roughly the same no. of edges
 Also, each partition holds vertices with consecutive ranges of IDs

* Partition contains all edges that point to a vertex within the partition

* Consecutive IDs cause memory access to have higher chance of being
consecutive, and GPU memory hardware can coalesce multiple
individual accesses into one range access (?)

Runtime system — Graph partition

* Each partition has , a set of all neighbours that
point to some vertex in that partition
* Each partition has , a set of all vertices within

the partition which is pointed at by some neighbours
* ONS is the vertices contained in the partition if using edge partitioning

Runtime system — Task execution

* All vertex mutable states are in DRAIM zero-copy memory
* Copy vertices state of INS set to device memory

Runtime system — Task execution — Pull-based

* One kernel for all three stages

* One thread for one vertex to execute init() and update(), which
enables coalesced memory access

* (Split the vertices into groups) and use a thread block for each group

* Thread block cooperatively execute the compute() functions for
vertice group to even out edge count imbalance

* Thread block only change vertices states within their group, updates
stored and aggregated in (don’t have to write back to
slower)

Runtime system — Task execution — Push-based

* One kernel for each stage

* One thread for one vertex to execute init() and update(), which
enables coalesced memory access

* One thread for each vertex in the INS to execute compute()

* “In the push model, since threads may potentially update any vertex,
all updates go to device memory to eliminate race conditions and

provide deterministic results. “ (?)

* All updates present in are write back to
so that updates are visible to all GPU (and external nodes)

Runtime system — Data synchronization

* Each node compute the vertices that it needs but are on remote nodes

Union of INS of all partitions (on a node) \ union of
ONS of all partions

* Then send/receive states for these nodes

Runtime system — Dynamic repartitioning

* Measures the actual execution time of each partition

e Calculate the need for repartitioning based on heuristics derived from
statistics of execution time

* Then assumes that execution time of each vertex is proportional to its
number of in-edges and calculate a better partition boundary (while
maintaining the property that vertices IDs within each partition are
still continuous)

* Then moves data around if boundaries changed
* Use same method to repartition within each node

Performance modelling

e Estimate the execution time based on parameters
* Number of nodes

* Number of GPUs per node

* Size of INS of each partition

e Size of UDS of each node

Performance modelling — Pull based

* Load time proportional to sum of |INS| / number of nodes

* Compute time proportional to total edge count / total number of
partitions

* Intra-node data transfer time is ignored because update can be done
once a vertex’s compute() functions have all executed and it overlap

with compute()
e Data synchronization time is proportional to sum of |UDS|

Performance modelling — Push based

* Load time combined with compute() time, where loading data
overlaps with compute() kernel

* Compute() is executed by a thread as long as vertex state of INS is
transferred to

* Compute time proportional to total edge count / total number of
partitions

* Intra-node data transfer is ignored because it is significantly shorter
than compute()

e Data synchronization time is proportional to sum of |UDS|

Implementation details — Loading input

e Pull model: kernel on each GPU load data from

* Push model: CPU coalesce vertices and then GPU kernels copies
coalesced data from

* Because Push model overlaps loading data with compute

(a) GPU kernel approach. (b) CPU core approach.
Figure 13: Different approaches for loading input data.

Implementation details — Coalescing memory access

e Use arrays for storing vertex states (such as vectors)
e Use cooperative threads to load vectors onto

e Use individual thread for processing a single edge
 Best of both world

Implementation details — Cache optimisation

* Copy data from zero-copy memory to device memory

* Cache and aggregate local vertex update in GPU shared memory
within a thread block

Evaluation — Comparison with other frameworks

* PageRank, connected components, single-source shortest path,
betweenness centrality, and collaborative filtering

* On-par with others for single GPU implementation
e Superior performance for distributed multi-CPU and multi-GPU

[I:I Best of (Ligra, Galeis, Polymer) [Best of (PowerGraph, GraphX) [Medusa E Groute [Lux
10 15 12 15 10 ¥ 22 42 22 94 44 29 1020 2B 15 41 12 11 10 29 11 39 13 55 16 13 10 24 20
W 4
£ 8t 4 Bl Bt 450 B} B}
w
E ot o 4.3 = | 5f 5t o o1 5.30
]
E al , M i al 429 s iy al 180 s 3 fa| L0 al 407 .
I A os a L290 Lo 2o 2 s
% 2t o Y JEI'."‘ 140 al] 410 2k o al
TR T 1.3 -_— ae 40 ol E LI . . 18 = =
ol 26 L= a1 220 oLLL I . ?1 oLLL . . 0ag oL . o) =) T g B2
™ RM UK Gs ™™ RM UK ™ RM UK GS ™™ RM MF YH
PR (1 iteration) CcC 555P BC CF (1 iteration)

Figure 16: The execution time for different graph processing frameworks (lower is better).

Evaluation — Others

* Dynamic repartitioning is expensive for first few iterations but
becomes small thereafter

* Push model performs better than pull model for algorithms where
not all vertices are active

B Per-iteration Runtime (Lux Repartitioning) Graph Migration Time (Local Repartitioning)
EER Fer-iteration Runtime (Local Repartitioning) [0 Lux Repartitioning Time

[Per-iteration Runtime (w/o Repartitioning) Local Repartitioning Time
[Graph Migration Time {Lux Repartitioning)
50 PR an TW with 1 nml:le (16 GPUs) . TCI{!GFH' on G5 with 4 nodes 1_1!5 GFUIS per n?de

a—

w wy 6000
400
£

1S £ 5000
w 300 @ 4000
E oo S 3000
c C 2000
2 100 2 100
o 1 2 3 4 5 5] 0 1 2 3 4 5 1]
Iterations lterations

lteration

Personal opinions

e Paper was hard to follow

* Lux is an evolution from existing ideas

* Programming model is essentially the same as Pregel, GAS
* Multi-GPU comes from Groute

* Performance gain comes from cores within a GPU and from fast
memory access on device memory

* Distributed systems enhancements: fault tolerance, or dealing with
scheduling

Q&A

