
(Lux) A distributed multi-GPU system for
fast graph processing

Victor

Oct 2020

Background – Prior work

• Put entire graph representation in DRAM

• Large shared memory with multi-core CPU on one machine

• Distributed memory on multiple machines

• Optimize data access across machines via graph partitioning strategy
and data locality

• Multiple GPUs on one machine

Background – Limitations of existing CPU-based approaches

• GPU has much larger memory access bandwidth than CPU

• CPU memory hierarchy and GPU memory hierarchy is different so
cannot directly use CPU distributed memory systems

Background – Limitations of existing GPU-based approach

• Only works only on one GPU/one machine

• Slow memory access from DRAM

Lux – programming model

• Similar to Pregel, Gather-Apply-Scatter concepts

• Vertex-centric algorithms

• Vertex contain mutable (in terms of algorithm reasoning) states

• Edges do not contain states AND topology cannot change

Lux – programming model

• Pull vs push

• (Graphs are all directed!)

• Pull allows a vertex’s compute() to get state updates from all in-edges

• Push allows a vertex’s compute() to push state updates from itself to
all out-edges

A

C

B

A

C

B

Compute() Compute()

+1

+3

+3

Pull Push

Lux – programming model

Runtime system – Graph partition

• Try to put whole representation into GPU device memory

• (Spillover in DRAM zero-copy memory)

• Edge partitioning: each partition holds roughly the same no. of edges

• Also, each partition holds vertices with consecutive ranges of IDs

• Partition contains all edges that point to a vertex within the partition

• Consecutive IDs cause memory access to have higher chance of being
consecutive, and GPU memory hardware can coalesce multiple
individual accesses into one range access (?)

Runtime system – Graph partition

• Each partition has in-neighbour set (INS), a set of all neighbours that
point to some vertex in that partition

• Each partition has out-neighbour set (ONS), a set of all vertices within
the partition which is pointed at by some neighbours

• ONS is the vertices contained in the partition if using edge partitioning

Runtime system – Task execution

• All vertex mutable states are in DRAM zero-copy memory

• Copy vertices state of INS set to device memory

Runtime system – Task execution – Pull-based

• One kernel for all three stages

• One thread for one vertex to execute init() and update(), which
enables coalesced memory access

• (Split the vertices into groups) and use a thread block for each group

• Thread block cooperatively execute the compute() functions for
vertice group to even out edge count imbalance

• Thread block only change vertices states within their group, updates
stored and aggregated in shared memory (don’t have to write back to
slower device memory)

Runtime system – Task execution – Push-based

• One kernel for each stage

• One thread for one vertex to execute init() and update(), which
enables coalesced memory access

• One thread for each vertex in the INS to execute compute()

• “In the push model, since threads may potentially update any vertex,
all updates go to device memory to eliminate race conditions and
provide deterministic results. “ (?)

• All updates present in device memory are write back to zero-copy
memory so that updates are visible to all GPU (and external nodes)

Runtime system – Data synchronization

• Each node compute the vertices that it needs but are on remote nodes

• Update set (UDS) Union of INS of all partitions (on a node) \ union of
ONS of all partions

• Then send/receive states for these nodes

Runtime system – Dynamic repartitioning

• Measures the actual execution time of each partition

• Calculate the need for repartitioning based on heuristics derived from
statistics of execution time

• Then assumes that execution time of each vertex is proportional to its
number of in-edges and calculate a better partition boundary (while
maintaining the property that vertices IDs within each partition are
still continuous)

• Then moves data around if boundaries changed

• Use same method to repartition within each node

Performance modelling

• Estimate the execution time based on parameters

• Number of nodes

• Number of GPUs per node

• Size of INS of each partition

• Size of UDS of each node

Performance modelling – Pull based

• Load time proportional to sum of |INS| / number of nodes

• Compute time proportional to total edge count / total number of
partitions

• Intra-node data transfer time is ignored because update can be done
once a vertex’s compute() functions have all executed and it overlap
with compute()

• Data synchronization time is proportional to sum of |UDS|

Performance modelling – Push based

• Load time combined with compute() time, where loading data
overlaps with compute() kernel

• Compute() is executed by a thread as long as vertex state of INS is
transferred to device memory

• Compute time proportional to total edge count / total number of
partitions

• Intra-node data transfer is ignored because it is significantly shorter
than compute()

• Data synchronization time is proportional to sum of |UDS|

Implementation details – Loading input

• Pull model: kernel on each GPU load data from zero-copy memory to
device memory

• Push model: CPU coalesce vertices and then GPU kernels copies
coalesced data from zero-copy memory to device memory

• Because Push model overlaps loading data with compute

Implementation details – Coalescing memory access

• Use arrays for storing vertex states (such as vectors)

• Use cooperative threads to load vectors onto shared memory

• Use individual thread for processing a single edge

• Best of both world

Implementation details – Cache optimisation

• Copy data from zero-copy memory to device memory

• Cache and aggregate local vertex update in GPU shared memory
within a thread block

Evaluation – Comparison with other frameworks

• PageRank, connected components, single-source shortest path,
betweenness centrality, and collaborative filtering

• On-par with others for single GPU implementation

• Superior performance for distributed multi-CPU and multi-GPU
systems

Evaluation – Others

• Dynamic repartitioning is expensive for first few iterations but
becomes small thereafter

• Push model performs better than pull model for algorithms where
not all vertices are active

Personal opinions

• Paper was hard to follow

• Lux is an evolution from existing ideas

• Programming model is essentially the same as Pregel, GAS

• Multi-GPU comes from Groute

• Performance gain comes from cores within a GPU and from fast
memory access on device memory

• Distributed systems enhancements: fault tolerance, or dealing with
scheduling

Q & A

