” - \‘.
-

X-Stream: Edge-centric
Graph Processing using
Streaming Partitions

A. Roy, |. Mihailovic, W. Zwaenepoel
Presented by: Samuil Stoychev

Graphs Processing

* Growing use in social networks, web rankings and others.

* Modern graphs can contain billions of edges.

Table 1: Popular benchmark graphs.

Graph Vertices | Edges
LiveJournal [9] 4.8M 69M
Twitter 2010 [31] 42M 1.5B
UK web graph 2007 [10] | 109M 3.7B
Yahoo web [8] 1.4B 6.6B

Source: “One Trillion Edges: Graph Processing at
Facebook-Scale” (Ching et al., 2015)

o’

&
L/

Q

.‘

»
)

5

g
1

@
@

v'."

T

m)>

Graph Processing Frameworks

oube, Distributed (scale out)frameworks:
8

* Giraph

* Pregel

h La b * Powergraph
|

 Single-machine (scale up)frameworks:
* Graphchi
oogle e X-Stream

The Scatter-Gather Programming Model

e State is maintained in the vertices.

» User provides a scatter and a gather
function.

» Scatter propagates updates to
neighbours

* Gather accumulates updates from
neighbours.

The Scatter-Gather Programming Model

e State is maintained in the vertices.

» User provides a scatter and a gather
function.

» Scatter propagates updates to
neighbours

* Gather accumulates updates from
neighbours.

The Scatter-Gather Programming Model

e State is maintained in the vertices.

» User provides a scatter and a gather
function.

» Scatter propagates updates to
neighbours

* Gather accumulates updates from
neighbours.

The Scatter-Gather Programming Model

vertex scatter(vertex v)

send updates over outgoing edges of v

vertex gather(vertex v)

apply updates from inbound edges of v

while not done
for all vertices v that need to scatter updates
- vertex scatter(v)

for all vertices v that have updates

vertex gather(v)

The Scatter-Gather Programming Model

x -0

vertex scatter(vertex v)

send updates over outgoing edges of v

vertex gather(vertex v)

apply updates from inbound edges of v

while not done
for all vertices v that need to scatter updates
vertex scatter(v)

for all vertices v that have updates

‘ vertex gather(v)

The Scatter-Gather Programming Model

* Simple but powerful interface.
 Sufficient to express a variety of Q
algorithms. Q

* Used by Pregel and Powergraph.

Vertex-Centric Scatter-Gather (BFS)

O mMmmoOUAN T >

isk

(A,B)
(A,D)
(C,A)
(C.E)
(D,E)
(E.B)
(F.E)
(G,A)
(G,F)

Disk

&

&

Vertex-Centric Scatter-Gather (BFS)

O mMmmoYujlnN|lm >

Disk

index

(A,B)
(A,D)

(C,A)
(C,E)

(D,E)
(E.B)
(F,E)
(G,A)
(G,F)

Disk

&

&

Vertex-Centric Scatter-Gather (BFS)

I11rnUﬂW>

Disk

(A,B)
(A,D)
(C.A)
(C.E)
(D,E)
(E.B)
(F.E)

Disk

&

&

@

&

12

I Vertex-Centric Scatter-Gather (BFS)

B (CA)
C (C.E)
D (D,E)
E (E,B)
F

(F,E)

Disk
Disk

I Vertex-Centric Scatter-Gather (BFS)

Disk

I Vertex-Centric Scatter-Gather (BFS)

Disk

Random vs Sequential Access

Source: “Computer Systems: A Programmer’s
Perspective” (Bryant and O'Hallaron)

« Random memory access is slower
than sequential memory access.

» Especially problematic for disk
devices.

* Programs need to exploit locality to
achieve efficient memory access.

Random vs Sequential Access

Medium Read (MB/s) Write (MB/s)
Random Sequential Random Sequential
RAM (1 core) 567 2605 1057 2248
RAM (16 cores) 14198 25658 10044 13384
SSD 22.5 667.69 48.6 576.5
Magnetic Disk 0.6 328 2 316.3

* Magnetic disk reads are 500+ times slower for random access.

* The gap in performance is bigger for slower media.

X-Stream

* Graph processing on a single shared-memory machine.

* Minimises random memory access through:

« Edge-centric scatter-gather
» Streaming partitions

» Supports both in-memory and out-of-core graphs.

Edge-Centric Scatter-Gather

edge scatter(edge e)
send update over e

update gather (update u)

apply update u to u.destination * Streamlng (Or |terat|ng
while not done over) edges instead of
for all edges e vertices.

edge scatter(e)
for all updates u
update gather(u)

Edge-Centric Scatter-Gather (BFS)

I-nrnUnw>

Disk

(A,B)
(A,D)
(C.A)
(C.E)
(D,E)
(E.B)
(F.E)
(G,A)
(G,F)

Disk

20

Edge-Centric Scatter-Gather (BFS)

(A,B)

AL (A,D)

(C,A)

(C.E)
o ©
(E.B)

(F,E)

=

Disk
Disk

I Edge-Centric Scatter-Gather (BFS)

(C.A)
(C.E)
(D,E)
(E.B)

Disk

Disk

I Edge-Centric Scatter-Gather (BFS)

PROBLEM: VERTEX MEMORY
ACCESS STILL RANDOM

Disk

I Edge-Centric Scatter-Gather (BFS)

(C.A)
(C.E)
(D,E)
(E.B)
(F.E)

Main

memory Disk

I Edge-Centric Scatter-Gather (BFS)

PROBLEM: VERTICES MIGHT NOT
FIT IN MAIN MEMORY

Streaming Partitions

 Split the set of vertices into partitions such that every partition
fits in memory.

» A partition also includes all edges whose source vertex is within
that partition.

Streaming Partitions

(A,B)
(A,D)
(C.A)
(C.E)
(D,E)
(E.B)
(F,E)
(G,A)
(G,F)

D

Main
memory

PARTITION 1

O mMmmOU AN ® >

Main
memory

Main
Disk memory

PARTITION 2

PARTITION 1

PARTITION 2

Shuffle Phase

D D

Main Main
memory memory

Main Main
memory memory

| Shuffle Phase

(C,E)

D

Main
memory

D

Main
memory

PARTITION 1

PARTITION 2

Main
memory

Main
memory

Generalising the Approach

« We showed interaction between:
« Disk (Slow Storage)
« Main memory (Fast Storage)

* But the same concept can be applied to
* Main memory (Slow Storage)
« Cache (Fast Storage)

* This allows to apply X-Stream for support both in-memory and out-of-
core graphs specifying two engines:
* Out-of-core Streaming Engine
* In-memory Streaming Engine

Evaluation Setup

 1U Server:

* 64GB main memory
« 200GB SSD
« 3TB magnetic disks

« X-Stream evaluated over 10 popular algorithms.

* Both synthetic and real-world datasets.

Algorithmic Performance

WCC SCC SSSP MCST MIS Cond. SpMV Pagerank BP
memory

amazon(0601 0.61s 1.12s 0.83s| 0.37s 3.31s| 0.07s| 0.09s 0.25s 1.38s
cit-Patents 2.98s 0.69s 0.29s| 2.35s 3.72s| 0.19s| 0.19s 0.74s 6.32s
soc-livejournal 7.22s 11.12s 9.60s| 7.66s 15.54s| 0.78s| 0.74s 2.90s Im 21s
dimacs-usa 6m 12s O9m 54s| 38m 32s| 4.68s 9.60s| 0.26s| 0.65s 2.58s 12.01s

ssd
Friendster 38m 38s| 1h 8m 12s|{1h 57m 52s({19m 13s|{1h 16m 29s| 2m 3s| 3m4ls 15m 31s 52m 24s
sk-2005 44m 3s|1h 56m 58s| 2h 13m 58/19m 30s|3h 21m 18s| 2m 14s| 1m 59s 8m9s| 56m 29s
Twitter 19m 19s 35m 23s 32m 25s|10m 17s| 47m 43s| 1m 40s| 1m 29s 6m 12s 42m 52s

disk
Friendster |1h 17m 18s|2h 29m 39s|3h 53m 44s{43m 19s|2h 39m 16s| 4m 25s| 7m 42s 32m 16s|1h 57m 36s
sk-2005 1h 30m 3s|4h 40m 49s|4h 41m 26s|39m 12s| 7h 1m 21s| 4m 45s| 4m 12s 17m 22s|2h 24m 28s
Twitter 39m 47s| 1h39m 9s|{1h 10m 12s| 29m 8s|{1h 42m 14s| 3m 38s| 3m 13s 13m 21s| 2h 8m 13s
yahoo-web — — — — — 16m 32s{14m 40s|1h 21m 14s| 8h 2m 58s

Algorithmic Performance

WCC SCC SSSP MCST MIS Cond. SpMV Pagerank BP
memory
amazon(0601 0.61s 1.12s 0.83s 0.37s 3.31s 0.07s 0.09s 0.25s 1.38s
cit-Patents 2.98s 0.69s 0.29s 2.35s 3.72s 0.19s 0.19s 0.74s 6.32s
oc-liveiourna D 60 DO 4)./ &). /4 () 1]
dimacs-usa 6m 12s O9m 54s| 38m 32s| 4.68s 9.60s| 0.26 0.65s 2.58s 12.01s
ssd
Friendster 38m 38s| 1h 8m 12s|{1h 57m 52s({19m 13s|1h 16m 29s| 2m 3s| 3m 4ls 15m 31s 52m 24s
sk-2005 44m 3s|1h 56m 58s| 2h 13m 5s5/19m 30s|{3h 21m 18s| 2m 14s| 1m 59s 8m 9s 56m 29s
Twitter 19m 19s 35m 23s 32m 25s{10m 17s 47m 43s| 1m 40s| 1m 29s 6m 12s 42m 52s
disk
Friendster |1h 17m 18s|2h 29m 39s|3h 53m 44s|43m 19s|2h 39m 16s| 4m 25s| 7m 42s 32m 16s|{1h 57m 36s
sk-2005 1h 30m 3s({4h 40m 49s|4h 41m 26s|39m 12s| 7h 1m 21s| 4m 45s| 4m 12s 17m 22s|2h 24m 28s
Twitter 39m 47s| 1h 39m 9s|{1h 10m 12s| 29m 8s|1h 42m 14s|{ 3m 38s| 3m 13s 13m 21s| 2h 8m 13s
yahoo-web — — — — — 16m 32s{14m 40s|1h 21m 14s| 8h 2m 58s

Algorithmic Performance

Graph # steps
In-memory
amazon(0601 19
cit-Patents 20
soc-livejournal 15
dimacs-usa 8122
Out-of-core
sk-2005 28
yahoo-web over 155

Number of Steps Taken to Cover the
Graph by HyperANF

 HyperANF measures the
neighbourhood function of the
graph.

* High numbers indicate those graphs
have a large diameter.

* They take many scatter-gather
iterations to complete, which is why
X-Stream performs poorly on them.

Scalability

262144
65536 |
16384 }

409 |

1024 |

256 |
64 |
16 }

4 }
1‘.
0.25 7

Runtime (s

X-Stream vs Graphchi

Pre-Sort (s) Runtime (s) Re-sort (s)
Twitter pagerank
X-Stream (1) none 397.57+1.83 -
Graphchi (32) 752.324+9.07 1175.12+£25.62 969.99
Netflix ALS
X-Stream (1) none 76.74+0.16 -
Graphchi (14) 123.73 +4.06 138.68 +26.13 45.02
RMAT27 WCC
X-Stream (1) none 867.59 +2.35 -
Graphchi (24) 2149.38 +41.35 2823.99 +704.99 1727.01
Twitter belief prop.

X-Stream (1) none 2665.64 +6.90 =
Graphchi (17) 742.42 +13.50 4589.52 +£322.28 1717.50

e X-Stream outperforms
Graphchi:
* No pre-processing cost.

e X-Stream makes a

better use of the SSD,
constantly maintaining
high bandwidth.

Reads (MBps)

Writes (MBps)

X-Stream vs Graphchi

800
600

400 f
200

800 |
600 [
400
200

X-Stream

Graphchi

aggregate:416.15

|

|

|

w

aggregate: 141.04

I

)

W

aggregate: 177.42

i

|

|

aggregate: 48.28

WMMM il

e X-Stream outperforms
Graphchi:
* No pre-processing cost.

e X-Stream makes a
better use of the SSD,

constantly maintaining
high bandwidth.

Review

« X-Stream achieved impressive results against existing
solutions.

* Points attention to the trade-off between number and cost of
Memory accesses.

* On the downside, X-Stream’s performance is heavily
dependant on the characteristics of the underlying graph.

Impact

* Chaos is the next generation of X-Stream.

* A couple of studies have adopted X-Stream'’s edge-centric

approach:
* “An FPGA framework for edge-centric graph processing” (S. Zhou et al.)
* “WolfGraph: The edge-centric graph processing on GPU” (H. Zhu et al.)

 However, the application of edge-centric frameworks seems to
be restricted to academia.

Thank you tor
the attention!

