
X-Stream: Edge-centric
Graph Processing using
Streaming Partitions
A. Roy, I. Mihailovic, W. Zwaenepoel

Presented by: Samuil Stoychev
1

Graphs Processing

• Growing use in social networks, web rankings and others.

• Modern graphs can contain billions of edges.

2

Source: “One Trillion Edges: Graph Processing at
Facebook-Scale” (Ching et al., 2015)

Graph Processing Frameworks

3

• Distributed (scale out) frameworks:
• Giraph

• Pregel

• Powergraph

• Single-machine (scale up) frameworks:
• Graphchi

• X-Stream

The Scatter-Gather Programming Model

STATE

• State is maintained in the vertices.

• User provides a scatter and a gather
function.

• Scatter propagates updates to
neighbours

• Gather accumulates updates from
neighbours.

The Scatter-Gather Programming Model

STATE

• State is maintained in the vertices.

• User provides a scatter and a gather
function.

• Scatter propagates updates to
neighbours

• Gather accumulates updates from
neighbours.

UPDATE

UPDATE

The Scatter-Gather Programming Model

STATE

• State is maintained in the vertices.

• User provides a scatter and a gather
function.

• Scatter propagates updates to
neighbours

• Gather accumulates updates from
neighbours.

UPDATE

UPDATE

The Scatter-Gather Programming Model

7

A

D

B

G

F
E

C

vertex_scatter(vertex v)

send updates over outgoing edges of v

vertex_gather(vertex v)

apply updates from inbound edges of v

while not done

for all vertices v that need to scatter updates

vertex_scatter(v)

for all vertices v that have updates

vertex_gather(v)

The Scatter-Gather Programming Model

8

A

D

B

G

F
E

C

vertex_scatter(vertex v)

send updates over outgoing edges of v

vertex_gather(vertex v)

apply updates from inbound edges of v

while not done

for all vertices v that need to scatter updates

vertex_scatter(v)

for all vertices v that have updates

vertex_gather(v)

The Scatter-Gather Programming Model

9

A

D

B

G

F
E

C

• Simple but powerful interface.

• Sufficient to express a variety of
algorithms.

• Used by Pregel and Powergraph.

Vertex-Centric Scatter-Gather (BFS)

1010

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Vertex-Centric Scatter-Gather (BFS)

1111

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

index

Vertex-Centric Scatter-Gather (BFS)

1212

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Vertex-Centric Scatter-Gather (BFS)

1313

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Vertex-Centric Scatter-Gather (BFS)

1414

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Vertex-Centric Scatter-Gather (BFS)

1515

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Random vs Sequential Access

Source: “Computer Systems: A Programmer’s
Perspective” (Bryant and O’Hallaron)

• Random memory access is slower
than sequential memory access.

• Especially problematic for disk
devices.

• Programs need to exploit locality to
achieve efficient memory access.

Random vs Sequential Access

• Magnetic disk reads are 500+ times slower for random access.

• The gap in performance is bigger for slower media.

X-Stream

• Graph processing on a single shared-memory machine.

• Minimises random memory access through:
• Edge-centric scatter-gather

• Streaming partitions

• Supports both in-memory and out-of-core graphs.

18

Edge-Centric Scatter-Gather

1919

edge_scatter(edge e)
send update over e

update_gather(update u)
apply update u to u.destination

while not done
for all edges e

edge_scatter(e)
for all updates u

update_gather(u)

• Streaming (or iterating
over) edges instead of
vertices.

Edge-Centric Scatter-Gather (BFS)

2020

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Edge-Centric Scatter-Gather (BFS)

2121

A

D

B

G

F
E

C

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)

Disk

A

B

C

D

E

F

G

Disk

Edge-Centric Scatter-Gather (BFS)

2222

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

Edge-Centric Scatter-Gather (BFS)

2323

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk

PROBLEM: VERTEX MEMORY
ACCESS STILL RANDOM

Edge-Centric Scatter-Gather (BFS)

2424

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Main

memory
Disk

Edge-Centric Scatter-Gather (BFS)

2525

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Main

memory
Disk

PROBLEM: VERTICES MIGHT NOT
FIT IN MAIN MEMORY

Streaming Partitions

• Split the set of vertices into partitions such that every partition
fits in memory.

• A partition also includes all edges whose source vertex is within
that partition.

Streaming Partitions

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Main

memory
Disk

A

B

C

D

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

Main
memory

Disk

E

F

G

(E,B)

(F,E)

(G,A)

(G,F)

Disk

Main
memory

PA
R

TI
TI

O
N

 1
PA

R
TI

TI
O

N
 2

Shuffle Phase

A

B

C

D

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

Main
memory

Disk

E

F

G

(E,B)

(F,E)

(G,A)

(G,F)

Disk

Main
memory

PA
R

TI
TI

O
N

 1
PA

R
TI

TI
O

N
 2

A

B

C

D

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

Main
memory

Disk

E

F

G

(E,B)

(F,E)

(G,A)

(G,F)

Disk

Main
memory

Shuffle Phase

A

B

C

D

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

Main
memory

Disk

E

F

G

(E,B)

(F,E)

(G,A)

(G,F)

Disk

Main
memory

PA
R

TI
TI

O
N

 1
PA

R
TI

TI
O

N
 2

A

B

C

D

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

Main
memory

Disk

(E,B)

(F,E)

(G,A)

(G,F)

Disk

Main
memory

E

F

G

(A,B)

(D,E)

UOUT UIN(1)

(A,B)

(D,E)

UIN(2)

Generalising the Approach

• We showed interaction between:
• Disk (Slow Storage)
• Main memory (Fast Storage)

• But the same concept can be applied to
• Main memory (Slow Storage)
• Cache (Fast Storage)

• This allows to apply X-Stream for support both in-memory and out-of-
core graphs specifying two engines:
• Out-of-core Streaming Engine

• In-memory Streaming Engine

Evaluation Setup

• 1U Server:
• 64GB main memory

• 200GB SSD

• 3TB magnetic disks

• X-Stream evaluated over 10 popular algorithms.

• Both synthetic and real-world datasets.

Algorithmic Performance

Algorithmic Performance

Algorithmic Performance

• HyperANF measures the
neighbourhood function of the
graph.

• High numbers indicate those graphs
have a large diameter.

• They take many scatter-gather
iterations to complete, which is why
X-Stream performs poorly on them.

Number of Steps Taken to Cover the
Graph by HyperANF

Scalability

X-Stream vs Graphchi

• X-Stream outperforms
Graphchi:
• No pre-processing cost.

• X-Stream makes a
better use of the SSD,
constantly maintaining
high bandwidth.

X-Stream vs Graphchi

• X-Stream outperforms
Graphchi:
• No pre-processing cost.

• X-Stream makes a
better use of the SSD,
constantly maintaining
high bandwidth.

Review

• X-Stream achieved impressive results against existing
solutions.

• Points attention to the trade-off between number and cost of
memory accesses.

• On the downside, X-Stream’s performance is heavily
dependant on the characteristics of the underlying graph.

Impact

• Chaos is the next generation of X-Stream.

• A couple of studies have adopted X-Stream’s edge-centric
approach:
• “An FPGA framework for edge-centric graph processing” (S. Zhou et al.)

• “WolfGraph: The edge-centric graph processing on GPU” (H. Zhu et al.)

• However, the application of edge-centric frameworks seems to
be restricted to academia.

Thank you for
the attention!

