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Graphs Processing

• Growing use in social networks, web rankings and others. 

• Modern graphs can contain billions of edges. 
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Source: “One Trillion Edges: Graph Processing at 
Facebook-Scale” (Ching et al., 2015) 



Graph Processing Frameworks
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• Distributed (scale out) frameworks: 
• Giraph

• Pregel 

• Powergraph

• Single-machine (scale up) frameworks:
• Graphchi

• X-Stream



The Scatter-Gather Programming Model

STATE

• State is maintained in the vertices.

• User provides a scatter and a gather
function. 

• Scatter propagates updates to 
neighbours

• Gather accumulates updates from 
neighbours.   
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The Scatter-Gather Programming Model
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The Scatter-Gather Programming Model
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• Simple but powerful interface. 

• Sufficient to express a variety of 
algorithms. 

• Used by Pregel and Powergraph. 



Vertex-Centric Scatter-Gather (BFS)
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Vertex-Centric Scatter-Gather (BFS)
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Vertex-Centric Scatter-Gather (BFS)
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Vertex-Centric Scatter-Gather (BFS)
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Vertex-Centric Scatter-Gather (BFS)
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Vertex-Centric Scatter-Gather (BFS)
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Random vs Sequential Access

Source: “Computer Systems: A Programmer’s 
Perspective” (Bryant and O’Hallaron)

• Random memory access is slower 
than sequential memory access. 

• Especially problematic for disk 
devices. 

• Programs need to exploit locality to 
achieve efficient memory access. 



Random vs Sequential Access

• Magnetic disk reads are 500+ times slower for random access. 

• The gap in performance is bigger for slower media.  



X-Stream

• Graph processing on a single shared-memory machine. 

• Minimises random memory access through: 
• Edge-centric scatter-gather 

• Streaming partitions

• Supports both in-memory and out-of-core graphs. 
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Edge-Centric Scatter-Gather
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edge_scatter(edge e) 
send update over e 

update_gather(update u)
apply update u to u.destination

while not done 
for all edges e

edge_scatter(e) 
for all updates u 

update_gather(u) 

• Streaming (or iterating 
over) edges instead of 
vertices. 



Edge-Centric Scatter-Gather (BFS)

2020

A

D

B

G

F
E

C

A

B

C

D

E

F

G

(A,B)

(A,D)

(C,A)

(C,E)

(D,E)

(E,B)

(F,E)

(G,A)

(G,F)
Disk

Disk



Edge-Centric Scatter-Gather (BFS)
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Edge-Centric Scatter-Gather (BFS)
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Edge-Centric Scatter-Gather (BFS)
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PROBLEM: VERTEX MEMORY 
ACCESS STILL RANDOM



Edge-Centric Scatter-Gather (BFS)
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Edge-Centric Scatter-Gather (BFS)
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PROBLEM: VERTICES MIGHT NOT 
FIT IN MAIN MEMORY



Streaming Partitions

• Split the set of vertices into partitions such that every partition 
fits in memory. 

• A partition also includes all edges whose source vertex is within 
that partition. 



Streaming Partitions
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Shuffle Phase
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Shuffle Phase
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Generalising the Approach

• We showed interaction between:
• Disk (Slow Storage)
• Main memory (Fast Storage)

• But the same concept can be applied to
• Main memory (Slow Storage)
• Cache (Fast Storage) 

• This allows to apply X-Stream for support both in-memory and out-of-
core graphs specifying two engines: 
• Out-of-core Streaming Engine

• In-memory Streaming Engine



Evaluation Setup

• 1U Server: 
• 64GB main memory

• 200GB SSD

• 3TB magnetic disks

• X-Stream evaluated over 10 popular algorithms.

• Both synthetic and real-world datasets.   



Algorithmic Performance
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Algorithmic Performance

• HyperANF measures the 
neighbourhood function of the 
graph. 

• High numbers indicate those graphs 
have a large diameter.

• They take many scatter-gather
iterations to complete, which is why 
X-Stream performs poorly on them.  

Number of Steps Taken to Cover the 
Graph by HyperANF



Scalability



X-Stream vs Graphchi

• X-Stream outperforms 
Graphchi: 
• No pre-processing cost. 

• X-Stream  makes a 
better use of the SSD, 
constantly maintaining 
high bandwidth. 
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Review

• X-Stream achieved impressive results against existing 
solutions. 

• Points attention to the trade-off between number and cost of 
memory accesses. 

• On the downside, X-Stream’s performance is heavily 
dependant on the characteristics of the underlying graph.



Impact 

• Chaos is the next generation of X-Stream. 

• A couple of studies have adopted X-Stream’s edge-centric 
approach: 
• “An FPGA framework for edge-centric graph processing” (S. Zhou et al.)

• “WolfGraph: The edge-centric graph processing on GPU” (H. Zhu et al.) 

• However, the application of edge-centric frameworks seems to 
be restricted to academia. 



Thank you for 
the attention!


