Ray: A Distributed Framework for Emerging AI Applications

Review by Ross Tooley
2020/10/15
Background
Distributed Execution Engine

• Handles the complexity of running on a distributed system.
Reinforcement Learning
Reinforcement Learning

Agent

Training
Policy improvement (e.g., SGD)

Serving
Policy evaluation

trajectory: $s_0, (s_1, r_1), \ldots, (s_n, r_n)$

Environment

Simulation

action (a_t)

state (s_{t+1})

(observation)

reward (r_{t+1})
Motivation

• Tight-coupling

• Dynamic scheduling

• Heterogenous hardware
Key Features
Two types of computational unit

<table>
<thead>
<tr>
<th>Task</th>
<th>Actor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrowed from Spark, CIEL, etc.</td>
<td>Borrowed from Akka, Rx, etc.</td>
</tr>
<tr>
<td>Remote</td>
<td>Remote</td>
</tr>
<tr>
<td>Stateless</td>
<td>Stateful</td>
</tr>
<tr>
<td>e.g. Simulation</td>
<td>e.g. Training</td>
</tr>
<tr>
<td>Fine-grained load-balancing</td>
<td>Low-overhead updates</td>
</tr>
<tr>
<td>Efficiently fault-tolerant</td>
<td></td>
</tr>
</tbody>
</table>
• Object Store provides *shared memory* per node
• GCS uses *sharding* to scale-out
Bottom-up Scheduler

Local node overloaded?

List nodes with enough resources

Sort by:
- Queue time
- Data-copy time

Send to best option

Schedule locally

• Reduces bottleneck at Global Scheduler
• Supports Data Locality
Results
Building Blocks

Training
• Equals Horovod throughput, 10% off TensorFlow. (Distributed SGD)

Serving
• Order of magnitude faster throughput than Clipper. (Embedded simulation, same machine, fully-connected NN)

Simulation
• 1.8x throughput of MPI. (Pendulum-v0)
RL Applications

(a) Evolution Strategies

(b) PPO
Review
Impressive Systems Tech

• GCS and Bottom-up Scheduler are contributions in their own right.
 • Horizontally-scalable dynamic scheduling
 • Data-locality support

• Could be applied to other ‘dynamically-scheduled’ frameworks

• Though dynamically-scheduled frameworks are rare
 • Can lead to high data copying, so may be slow in worst case
 • RL restricts the applications, but may not always avoid this
Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated* Unaffiliated†

Abstract

We offer a new metric for big data platforms, COST, or the Configuration that Outperforms a Single Thread. The COST of a given platform for a given problem is the hardware configuration required before the platform outperforms a competent single-threaded implementation. COST weighs a system’s scalability against the overheads introduced by the system, and indicates the actual performance gains of the system, without rewarding systems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems recently reported in SOSP and OSDI, and find that many systems have either a surprisingly large COST, often hundreds of cores, or simply underperform one thread for all of their reported configurations.

Figure 1: Scaling and performance measurements for a data-parallel algorithm, before (system A) and after (system B) a simple performance optimization. The unoptimized implementation “scales” far better, despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will argue that many published big data systems more closely resemble system A than they resemble system B.
Is Ray useful?

• Fits a niche: RL applications with (short) embedded simulations.
 • More efficient than existing frameworks and bespoke solutions

• But, is this a common pattern?
 • Otherwise it is just yet another Distributed Framework
 • Lacking funding of Spark / TensorFlow to add features and optimisations
Since publication

• Integration with many existing frameworks

• New RL libraries use Ray as a pluggable backend
 • RLlib
 • RLgraph