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Background



Distributed Execution Engine

* Handles the complexity of running on a distributed system.
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Motivation

* Tight-coupling
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Key Features



AP]

* Two types of computational unit

T

Borrowed from Spark, CIEL, etc. Borrowed from Akka, Rx, etc.
Remote Remote

Stateless Stateful

e.g. Simulation e.g. Training

Fine-grained load-balancing Low-overhead updates

Efficiently fault-tolerant



Architecture
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Bottom-up Scheduler

Local Global

Local node
overloaded?

! ]  Reduces bottleneck at Global Scheduler
List nodes with

n hr r '
enougn resources * Supports Data Locality

Sort by:
- Queue time
- Data-copy time

Send to best option

Schedule locally



Results



Building Blocks

Training
* Equals Horovod throughput, 10% off TensorFlow. (Distributed SGD)

Serving

* Order of magnitude faster throughput than Clipper. (Embedded
simulation, same machine, fully-connected NN)

Simulation
e 1.8x throughput of MPI. (Pendulum-v0)



RL Applications
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Review



Impressive Systems Tech

* GCS and Bottom-up Scheduler are contributions in their own right.
e Horizontally-scalable dynamic scheduling
e Data-locality support

* Could be applied to other ‘dynamically-scheduled’ frameworks

* Though dynamically-scheduled frameworks are rare
* Can lead to high data copying, so may be slow in worst case
e RL restricts the applications, but may not always avoid this



‘Scalability! But at what COST?”

Scalability! But at what COST?

Frank McSherry
Unaffiliated

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system's scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDIL, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.
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Figure 1: Scaling and performance measurements

for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales™ far better,
despite {or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.




s Ray useful?

* Fits a niche: RL applications with (short) embedded simulations.
* More efficient than existing frameworks and bespoke solutions

* But, is this a common pattern?
* Otherwise it is just yet another Distributed Framework
* Lacking funding of Spark / TensorFlow to add features and optimisations



Since publication
Spof’?

[
* Integration with many existing frameworks y oy

J7// DASK ﬂ,)

* New RL libraries use Ray as a pluggable backend
* RLIib
e RLgraph



