Ray: A Distributed Framework
for Emerging Al Applications

Review by Ross Tooley
2020/10/15

Background

Distributed Execution Engine

* Handles the complexity of running on a distributed system.

sk

J7/ DASK

Reinforcement Learning

Tralnlng
Policy

' improvement |

. (e.g., SGD)

pDIIC}’

. Servin g
Policy
' evaluation

action (a;)

| state (sy) |
'(observation).

Environment

1 [i
. | reward (r;)|!

ST

/7/ DASK

Reinforcement Learning

: Training .
. Policy

' improvement |

. (e.g., SGD)

Serumg

PDIICYI Policy

(Sn, In)

trajectory: sy, (s, 1y), ...,

action (a;)

' evaluation

state (s;,)

observation):

Environment

4 i
. | reward (r;)|!

Motivation

* Tight-coupling

Agent Environment

. ‘Training: | Serving | | action (a)
* Dynamlc . Policy ipnlicyl Policy 5 5 g

. P a— . | state (s;4)
scheduling | improvement | evaluation (pbservation)
(€. 56D v b i[Teward(r)

¢ I
* Heterogenous trajectory: so, (s, Iy), -, (Sp, In)

hardware

Key Features

AP]

* Two types of computational unit

T

Borrowed from Spark, CIEL, etc. Borrowed from Akka, Rx, etc.
Remote Remote

Stateless Stateful

e.g. Simulation e.g. Training

Fine-grained load-balancing Low-overhead updates

Efficiently fault-tolerant

Architecture

. Node Node Node
5
2 { Driver || Worker Actor Driver Worker || Worker
g
Object Store K—> Object Store > Object Store
= Local Scheduler Local Scheduler Local Scheduler * Object Store provides
é W shared memory per node
&
S Global Control Store (GCs) [, 4 Ve . GCS uses sharding to
o | Object Table A Debuggin _
E‘ Global oy Toglgs g scale-out
= Scheduler Task Table #*
*ﬂ,i - Function Table N Profiling Tools
wn \
Event L
L 1 Error Diagnosis
[
|

Bottom-up Scheduler

Local Global

Local node
overloaded?

!] Reduces bottleneck at Global Scheduler
List nodes with

n hr r '
enougn resources * Supports Data Locality

Sort by:
- Queue time
- Data-copy time

Send to best option

Schedule locally

Results

Building Blocks

Training
* Equals Horovod throughput, 10% off TensorFlow. (Distributed SGD)

Serving

* Order of magnitude faster throughput than Clipper. (Embedded
simulation, same machine, fully-connected NN)

Simulation
e 1.8x throughput of MPI. (Pendulum-v0)

RL Applications

-lﬂ- gu | | 1 | | J'-_ﬂl.

m | | ||]]]

*é 80 I Reference ES|- % 500 mmm MPI PPO |

= I Ray ES]l £

g0 Y £ 400 £ Ray PPO|

o 60 ‘L'

E 50 2 300 -

o 40 e

S 39 2 200 .

Q W

E

s 20 £ 100 .

= 10 =

s} m

o 0 v 0

= 256 1024 8192 = 8x1 bdx8 512x64
Mumber of CPUs CPUs x GPUs

(a) Evolution Strategies (b) PPO

Review

Impressive Systems Tech

* GCS and Bottom-up Scheduler are contributions in their own right.
e Horizontally-scalable dynamic scheduling
e Data-locality support

* Could be applied to other ‘dynamically-scheduled’ frameworks

* Though dynamically-scheduled frameworks are rare
* Can lead to high data copying, so may be slow in worst case
e RL restricts the applications, but may not always avoid this

‘Scalability! But at what COST?”

Scalability! But at what COST?

Frank McSherry
Unaffiliated

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system's scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDIL, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

Michael Isard Derek G. Murray
Unaffiliated”

Unaffiliated”

50 1000
X
B ..-f“'ﬁ - <
10] 4
4 sysiem B & 100
]]
g -
1 8
1 1o 100 300 1 10 100 300
e s COnEs
Figure 1: Scaling and performance measurements

for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales™ far better,
despite {or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble system A than they resemble system B.

s Ray useful?

* Fits a niche: RL applications with (short) embedded simulations.
* More efficient than existing frameworks and bespoke solutions

* But, is this a common pattern?
* Otherwise it is just yet another Distributed Framework
* Lacking funding of Spark / TensorFlow to add features and optimisations

Since publication
Spof’?

[
* Integration with many existing frameworks y oy

J7// DASK ﬂ,)

* New RL libraries use Ray as a pluggable backend
* RLIib
e RLgraph

