
Ray: A Distributed Framework 
for Emerging AI Applications

Review by Ross Tooley

2020/10/15



Background



Distributed Execution Engine

• Handles the complexity of running on a distributed system.



Reinforcement Learning



Reinforcement Learning



Motivation

• Tight-coupling

• Dynamic 
scheduling

• Heterogenous 
hardware



Key Features



API

Task Actor

Borrowed from Spark, CIEL, etc. Borrowed from Akka, Rx, etc.

Remote Remote

Stateless Stateful

e.g. Simulation e.g. Training

Fine-grained load-balancing Low-overhead updates

Efficiently fault-tolerant

• Two types of computational unit



Architecture

• Object Store provides 
shared memory per node

• GCS uses sharding to
scale-out



Bottom-up Scheduler

Local node 
overloaded?

Local Global

List nodes with 
enough resources

Sort by:
- Queue time
- Data-copy time

Send to best optionSchedule locally

• Reduces bottleneck at Global Scheduler

• Supports Data Locality



Results



Building Blocks

Training

• Equals Horovod throughput, 10% off TensorFlow. (Distributed SGD)

Serving

• Order of magnitude faster throughput than Clipper. (Embedded 
simulation, same machine, fully-connected NN)

Simulation

• 1.8x throughput of MPI. (Pendulum-v0)



RL Applications



Review



Impressive Systems Tech

• GCS and Bottom-up Scheduler are contributions in their own right.
• Horizontally-scalable dynamic scheduling

• Data-locality support

• Could be applied to other ‘dynamically-scheduled’ frameworks

• Though dynamically-scheduled frameworks are rare
• Can lead to high data copying, so may be slow in worst case

• RL restricts the applications, but may not always avoid this



‘Scalability! But at what COST?’



Is Ray useful?

• Fits a niche: RL applications with (short) embedded simulations.
• More efficient than existing frameworks and bespoke solutions

• But, is this a common pattern?
• Otherwise it is just yet another Distributed Framework

• Lacking funding of Spark / TensorFlow to add features and optimisations



Since publication

• Integration with many existing frameworks

• New RL libraries use Ray as a pluggable backend
• RLlib

• RLgraph


