Rlgraph: Modular Computation Graphs For Deep Reinforcement Learning

Paper by Michael Schaarschmidt, Sven Mika, Kai Fricke, Eiko Yoneki
Presentation by Matthew Guest
Reinforcement Learning

• Has its origins with Markovian Decision Processes (Bellman, 1957)
• Q – value vs Q - learning
• Deep Q-Network Deepmind (Volodymyr Mnih et al, 2013)
• DNQ Issues: Forgetfulness / Volitility; Enormous state-space
• Algorithmic Progress: Dueling DNS (Ziyu Wang, 2015), IMPALA
• Environment Standardisation: OpenAI gym
• Reinforcement Learning Frameworks...
Challenges of Reinforcement Learning

• No Supervision, Feedback is Delayed (Credit Assignment Problem)
• Data observed is causally effected by agents' actions.
 • Therefore, Actor / Environment feedback loop is sequential
 • Parallelisation (Especially if environment not simulated)
• Non-determinism of environment and stochastic nature of many approximations cause issues with testing and reproducibility.
• Large Search Space -> Computational Power:
 • Seeking to benefit from distributed approach
RL Frameworks

- OpenAI gym – Baselines for testing, Environments (Atari, 3D, ...)
 - Tool for environments, libraries favour conciseness over extensibility

- TensorFlow – TensorFlow library for Deep RL
 - Declarative API
 - Modular Components (not decomposable)
 - Algorithm and Application Separation

- Ray RLib – RL Library for Ray Distributed Execution Engine
 - Distributed RL Library. Native to Ray with Central Command Framework
Rlgraph Overview

• This paper outlines a new, unifying Framework with the aim to improve:

• Incremental Building Testing
 • To improve the speed of prototyping and robustness of production models.

• Distributed Execution
 • By focusing on modularisation, RLgraph aims to separate the concerns of design and execution.

• Extensibility
 • By separating “logical component composition, backend graph definition and distributed execution,” components are interchangeable and well defined.
Rlgraph Components

- The Rlgraph framework is primarily a Component graph.
- A Component class can encapsulate arbitrary computations.
- A Component contains internal methods, API methods, variables, and associated sub-components.
- This graph structure is an abstraction that can be executed across platforms.
Framework Design

• Separating algorithms and execution
 • RL algorithms require complex control flow to coordinate distributed system and sample collection.
 • Agents’ policies require internal training logic.
 • Components separate concerns.

• Reusable components with strict interfaces.
 • Interchangeable components, not dissimilar to NN layers in Keras for example.
 • Components interact only via strict, declared APIs. Static analysis

• Incremental sub-graph testing.
 • Components in Rlgraph may be individually built and tested.
Identified Failings of Existing Frameworks

• TensorForce – TensorFlow library for Deep RL
 • Modular, but lack Modular, Separated Build Process for Testing
 • Unnecessary context switching between TF runtime and Python interpreter

• Ray RLib – RL Library for Ray Distributed Execution Engine
 • Lacks portability due to Ray nativity
 • Restricted Control Flow inherited from Ray
Results

- Build overhead: Sub 1 second for both TF and PT
- Worker Performance Baseline: No overhead on TF, Slight overhead PT
- Distributed execution on Ray:
 - Outperformed RLib in Ray environment
Follow on

• This paper was 2019
• RL Algorithms: Multi Agent & Semi Supervised
• Frameworks: Acme (Deepmind June 2020)
Q&A