
NORIA

DYNAMIC

DATA FLOW

FOR WEBAPPS

High performance through partial statefulness

By J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araujo,

M. Ek, E. Kohler, M. F. Kaashoek and R. Morris

THE PROBLEM

• Web services: high throughput, low latency

• Only eventual consistency needed, see CAP theorem

• Changes may need to be rolled out quickly and painlessly

• Many more reads than writes

• Relational structure of data

• ! Relational database is too slow

• ! Need to add some form of caching

CAP Theorem [1998]:

A distributed data store cannot

achieve all three of the following:

1. Consistency

2. Availability

3. Partition Tolerance

SOLUTION NO. 1: REDIS

• Key-value store. Examples: Redis, Memcached.

• Good for rapid access to precomputed queries

• But there is a problem on write operations: we must invalidate or replace cache

• ! Cache invalidation is hard to get done right (“thundering herds”)

• ! Cache invalidation might be slow

• Eventual consistency

SOLUTION NO. 2: STREAM PROCESSING

• Examples: Twitter Heron, internal Facebook tooling

• Keeps results for queries that use lots of old data

• But use only recent records

• ! Need to keep a complete state for some operators

• ! Typically need a restart on change to query structure

PROBLEMS:

• ! Invalidation is hard to get done right (“thundering herds”)

• ! Invalidation might be slow

• ! Need to keep state for some operators

• ! Typically need a restart on change to query structure

SOLUTIONS:

• ! Invalidation is hard to get done right (“thundering herds”): outsource to Noria

• ! Invalidation might be slow: make it asynchronous

• ! Need to keep state for some operators: partial state - evict unused data, compute on demand

• ! Typically need a restart on change to query structure: clever transitions

NORIA

Stateful

Dynamic

Parallel

Distributed

CONTRIBUTIONS:

• Data flow model with partial statefulness and upquery capability

• A module for transitioning a dataflow graph on schema change

• Implementation in Rust and performance assessment

CONTRIBUTIONS (1):

• Data flow model with partial statefulness and upquery capability

• A module for transitioning a dataflow graph on schema change

• Implementation in Rust and performance assessment

BUILDING BLOCKS OF NORIA

• Base tables: store raw data; no redundancy

• Internal views: helpers for external views

• External views: a predefined set of “standard” queries

• A Noria Program is a schema of base tables and views

• Similar to the database schema, supports SQL

• But can be changed on-the-run

Source: Noria paper

CONCEPT: UPQUERY

• Noria builds a data flow graph

• Stateful and stateless vertices

• Parts of states are evicted in:

• Writes

• Running out of space – least used ones

• Eviction of children states runs in the background

• If query depends on unknown data, upquery is performed

Source: Noria paper

WHAT HAPPENS ON EVICTION?

Source: Noria paper

REQUIREMENTS FOR EVENTUAL CONSISTENCY

• Operators are deterministic wrt. own state and ancestor inputs

• No race conditions between writes and upqueries

• No reordering on the same path

• No race conditions between separate updates arriving on a single operator

CONTRIBUTIONS (2):

• Data flow model with partial statefulness and upquery capability

• A module for transitioning a dataflow graph on schema change

• Implementation in Rust and performance assessment

WHAT IF OUR SCHEMA CHANGES?

• A transition from old to new state of computational graph necessary

• Schema change is planned and careful

• Aimed at reusing operators and states

• When schema change concludes, old model is purged.

ADAPTABILITY

• Supports most (but not all) SQL operators

• A standalone tool able to replace a relational database and cache.

• Plug-in design, easy to adapt into an existing application.

CONTRIBUTIONS (3):

• Data flow model with partial statefulness and upquery capability

• A module for transitioning a dataflow graph on schema change

• Implementation in Rust and performance assessment

LATENCY V. MARIADB

• Tested on Lobsters news aggregator

• 2-10x faster than relational databases

• More write-bound than relational DBs

• Requires ample memory

• Much lower average latency
Source: Noria paper

LATENCY WRT. READ/WRITE BALANCE

Source: Noria paper

SCALABILITY

Source: Noria paper

• Compared vs. Differential Dataflow, based on Naiad

• State size diminished due to partial state to ~20-40%

• Communication between nodes uses RPC

• Techniques: sharding, multicore parallelism

ISSUES

• Only eventual consistency

• Randomized eviction from partial state – especially in low-memory settings

• Limited SQL support

• Slow response to some queries, especially writes

IS IT READY?

“Noria is most definitely still a research prototype, though I think the thing standing between

where it is now and a production-ready version is mostly just engineering effort. We are a small

team of researchers working on it, and we focus our efforts on the aspects of the system that are

related to our ongoing research. There is relatively little room for spending lots of time on doing

“production engineering” in the academic setting :)”

Source: interview with Jon Gjengset, https://notamonadtutorial.com/interview-with-norias-creator-a-

promising-dataflow-database-implemented-in-rust-352e2c3d9d95

OUTCOMES

• Noria is a good and promising dataflow design

• Its adaptability to changes in data flow schema is novel

• It is open source

• It is easy to integrate into existing software

• But not yet production-ready

