;\\ v

NORIA
DYNAMIC
DATA FLOW
FOR WEBAPPS

High performance through partial statefulness

By J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araujo,
M. Ek, E. Kohler, M. F. Kaashoek and R. Morris

THE PROBLEM

Web services: high throughput, low latency CAP Theorem [1998]:
A distributed data store cannot

achieve all three of the following:
1. Consistency

2. Availability
* Many more reads than writes 3. Partition Tolerance

Only eventual consistency needed, see CAP theorem

Changes may need to be rolled out quickly and painlessly

Relational structure of data

[Relational database is too slow

l Need to add some form of caching

SOLUTION NO. 1: REDIS &P redis

Key-value store. Examples: Redis, Memcached.

Good for rapid access to precomputed queries

But there 1s a problem on write operations: we must invalidate or replace cache

I Cache invalidation is hard to get done right (“thundering herds”)

I Cache invalidation might be slow

Eventual consistency

SOLUTION NO. 2: STREAM PROCESSING

» Examples: Twitter Heron, internal Facebook tooling
» Keeps results for queries that use lots of old data

* But use only recent records

* | Need to keep a complete state for some operators

» | Typically need a restart on change to query structure

PROBLEMS:

[Invalidation is hard to get done right (“thundering herds’)
[Invalidation might be slow
I Need to keep state for some operators

I ' Typically need a restart on change to query structure

SOLUTIONS:

I Invalidation is hard to get done right (“thundering herds”): outsource to Noria

[Invalidation might be slow: make it asynchronous

[Need to keep state for some operators: partial state - evict unused data, compute on demand

I ' Typically need a restart on change to query structure: clever transitions

NORIA

Stateful
Dynamic
Parallel

Distributed

CONTRIBUTIONS:

» Data flow model with partial statefulness and upquery capability
* A module for transitioning a dataflow graph on schema change

» Implementation in Rust and performance assessment

CONTRIBUTIONS (1):

» Data flow model with partial statefulness and upquery capability
* A module for transitioning a dataflow graph on schema change

» Implementation in Rust and performance assessment

BUILDING BLOCKS OF NORIA

Base tables: store raw data; no redundancy
Internal views: helpers for external views

External views: a predefined set of “standard” queries

A Noria Program1s a schema of base tables and views
Similar to the database schema, supports SQL

But can be changed on-the-run

CREATE TABLE stories

(id int, author int, title text, url text);
CREATE TABLE votes (user int, story_id int);
CREATE TABLE users (id int, username text);

CREATE INTERNAL VIEW VoteCount AS
SELECT stoury_id, COUNT(*) AS vecuunt
FROM votes GROUP BY story_id;

CREATE VIEW StoriesWithVC AS
SELECT id, author, title, url, vcount
FROM stories
JOIN VoteCount ON VoteCount.story_id = stories.id
WHERE stories.id = 7;

Figure 2: Noria program for a key subset of the Lobsters
news aggregator [43] that counts users’ votes for stories.

Source: Noria paper

. I blo upstream I1 blo upstream
. a 7 |state m_ S| state

|
[(2)upquery
[1]2]a] ,' into
(Dincoming [_,_]G”‘“ TER J upstream (®upquery
record . e response
’ state a
at join £
* Noriabuilds a data flow graph triggers
upquery A2 Ta17]

Stateful and stateless vertices
Figure 3: Noria’s data-flow operators can query into up-
stream state: a join issues an upquery (I) to retrieve a
e Writes record from upstream state to produce a join result (II).

Parts of states are evicted in:

« Running out of space — least used ones Source: Noria paper

Eviction of children states runs in the background

If query depends on unknown data, upquery is performed

WHAT HAPPENS ON EVICTION?

upquery
MISSES,
recurses

@ read

MISSCS

S

(\P

@ recursive upquery hits

e gp——
K| x|7
y2

[Ysum |—

kL O
rbf_l,k)

@upqucr) response

fills missing record

Figure 4: A partially-stateful view sends a recursive up-
query to derive evicted state (_L) for key k from upstream
state (I); the response fills the missing state (II).

Source: Noria paper

stories votes
id | author | text user | story id
ol 3 [a u7 0 T = {|ut]1] [u]1]}
1] wi b ut 1 ¢
u3 1 VoteCount
@11 story_id|vcount
id story s ud
StoriesWithvC S ={ \
story id|author| text | veount e @3 .
0 4 = § \
I D, = { (&IE12] |

Figure 5: Definitions for partial state entry e (yellow)
in VoteCount: an in-flight update from votes (blue) is
in 7,, but not yet in S,; the entry in StoriesWithVC is
key-descendant from e via story_id (green).

REQUIREMENTS FOR EVENTUAL CONSISTENCY

* Operators are deterministic wrt. own state and ancestor inputs
* No race conditions between writes and upqueries
* No reordering on the same path

* No race conditions between separate updates arriving on a single operator

CONTRIBUTIONS (2):

» Data flow model with partial statefulness and upquery capability
» A module for transitioning a dataflow graph on schema change

» Implementation in Rust and performance assessment

WHAT |IF OUR SCHEMA CHANGES?

* A transition from old to new state of computational graph necessary
* Schema change 1s planned and careful
» Aimed at reusing operators and states

* When schema change concludes, old model 1s purged.

ADAPTABILITY

* Supports most (but not all) SQL operators
» A standalone tool able to replace a relational database and cache.

* Plug-in design, easy to adapt into an existing application.

CONTRIBUTIONS (3):

» Data flow model with partial statefulness and upquery capability
* A module for transitioning a dataflow graph on schema change

* Implementation in Rust and performance assessment

LA I E N ‘ Y V MAR I AD B —#— MariaDB, baseline qu. —©&— Noria, baseline qu. —&— Noria, natural qu.
] I I

100 Al
Z 80 =
> 60 i
2
g.; 40 =
* Tested on Lobsters news aggregator = 20 g
U w—‘.lm**l*_“l
 2-10x faster than relational databases 3K 4K 5K
Offered load [page views/sec]
 More write-bound than relational DBs Figure 6: Noria scales Lobsters to a 5x higher load
than MariaDB (2.3 x with baseline queries) at sub-100ms
. Requires ample memory 95%ile latency (dashed: median). MariaDB is limited by
read computation, while Noria becomes write-bound.
[]

Much lower average latency Source: Noria paper

LATENCY WRT. READ/WRITE BALANCE

g 100 f —A— MariaDB (hand-opt.) [é 100 - | —A— MariaDB (hand-opt.)
g 4= System Z , E; | —+— SystemZ
g MariaDB+memcached J' :S | MariaDB+memcached
=50 —2 memcached-only ; =50 - | —y memcached-only
2 Noria (4 shards) , 2 J | —&— Noria (4 shards)
S T — e T & — R
() I I I |} I () L} I 1 1 1 T 1
0 2M 4M 6M SM 1OM I2M 14M 0 2M 4M 6M SM IOM I2M 14M

Offered load [requests/sec] Offered load [requests/sec]

(a) Read-heavy workload (95%/5%): Noria outperforms all (b) Mixed read-write workload (50%/50%): Noria outperforms
other systems (all but memcached at 100-200k requests/sec). all systems but memcached (others are at 20k requests/sec).

Source: Noria paper

= 30M 4 —B
2 —&— Differential Dataflow o
54 —B8— Noria
= 20M 4
ERYE -
=
[J = () I T T T T T T T Ll T

Compared vs. Differential Dataflow, based on Naiad % 2 U 2 25 & ¢ m

Number of machines

State size diminished due to partial state to ~20-40%

Figure 9: For a uniform 95%/5% workload, Noria scales
to ten machines with sub-100ms 95th %tile latency by

 Communication between nodes uses RPC sharding the data-flow. Differential dataflow [44] scales

less well due to its inter-worker coordination.

Techniques: sharding, multicore parallelism ,
Source: Noria paper

ISSUES

Only eventual consistency
Randomized eviction from partial state — especially 1n low-memory settings
Limited SQL support

Slow response to some queries, especially writes

IS IT READY?

“Noriais most definitely still a research prototype, though I think the thing standing between
where 1t is now and a production-ready version is mostly just engineering effort. We are a small
team of researchers workingon it, and we focus our efforts on the aspects of the system that are
related to our ongoing research. There 1s relatively little room for spending lots of time on doing
“production engineering” in the academic setting :)”

Source: interview with Jon Gjengset, https://notamonadtutorial.com/interview-with-norias-creator-a-
promising-dataflow-database-implemented-in-rust-352e2¢3d9d95

OUTCOMES

Noria is a good and promising dataflow design

Its adaptability to changes in data flow schema 1s novel

It 1s open source

It 1s easy to integrate into existing software

But not yet production-ready

