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What is NAIAD?

• Want the high throughput of batch processing systems?

• And the low latency of stream processors?

• Do you also need to handle incremental 
and iterative computation?

• Naiad does all of this and more!! 
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Brief recap
Batch processors

• Input data grouped, e.g. per hour, per N transactions
• Data is processed all together
• Use cases: time-insensitive, or completeness requirements

Map ReduceIN OUT

…

QUERY
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Brief recap
Stream processors

• Continuous input
• Data processed as soon as input active
• Use case: time-critical, estimations okay

Map ReduceIN OUT

…

QUERY
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Brief recap
Existing systems

• Batch processors: high latency for queries
• Stream processors like MillWheel have no support for iteration
• Trigger based systems support iteration on data streams by updating 

shared state (such as key-value tables, c.f. Oolong), but no 
consistency guarantees

• Enter Naiad’s timely dataflow model
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What is timely dataflow?
Overview

• Timestamps
• Loop contexts
• Message passing and notifications
• Pointstamps (time-and-location)
• Pointstamp dependencies
• Consistency guarantees
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What is timely dataflow?
Traditional timestamps

• Timestamps affixed to input data to simulate batch processing
• Not a new idea in itself – used by processors like MillWheel to make 

certain guarantees about output
• Useful when real time data arrives in system out of order, (e.g. event 

at 1402hrs not seen until 1408hrs)
• Naiad assigns each input an integer epoch
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What is timely dataflow?

• Naiad supports iteration using loop contexts

• Top-level streaming context contains entire computation, and loop contexts 
may be nested

• Loop contexts always have:

• Ingress node

• Egress node 

• Feedback node 

Loop contexts
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What is timely dataflow?

• Each loop context modifies the timestamp of each message:

• Feedback nodes increment loop counter ck

• Ingress nodes increment dimension of loop counter, (egress decrement)

Naiad timestamps
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What is timely dataflow?

• Naiad sends messages between vertices along edges:

• OnRecv(Edge e, Message msg, Timestamp t)

• SendBy(Edge e, Message msg, Timestamp t)

• Notifications provide a way to be certain no more OnRecv calls with some 
particular timestamp are incoming:

• OnNotify(Timestamp t)

• NotifyAt(Timestamp t)

Message passing

11 of 23



What is timely dataflow?
Message passing

U V

this.SendBy(uv, msg1, t1)

V.OnRecv(uv, msg1, t1)
{ … }
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What is timely dataflow?

• Mustn’t send messages back in time!

• If v.OnRecv(e, msg, t1) is called, can only invoke calls of SendBy and NotifyAt
using timestamp t2, with t2 >= t1

• Additionally, system must ensure that if V.OnNotify(t2) is called, this means 
there can be no further invocations of V.OnRecv(e, msg, t1) for t1 <= t2

• These constraints allow both low latency processing (using SendBy and 
OnRecv) as well as consistency in output where required (using notifications)

Constraints
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What is timely dataflow?

• Input data affixed with integer epoch (‘batch’)

• Loop contexts provide a way to compare data order (timestamps)

• Messages sent/received provide low latency

• Notification delivery provides consistency

• Problem: when can notifications actually be delivered (which timestamp)? 

Data ordering
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What is timely dataflow?

• Suppose we have some notification to deliver to a particular vertex. We need 
to work out when this delivery ‘event’ can occur.

• Possible future timestamps constrained by current set of unprocessed events 
(messages + notifications), i.e. we cannot deliver a notification if it has any 
earlier dependencies.

• Each event has a timestamp and a location, either an edge or vertex. Naiad 
expresses these as pointstamps

Pointstamps
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What is timely dataflow?

• The pointstamp (t1, l1) could-result-in (t2, l2) if there is a path between l1 and 
l2, through the various ingress, egress and feedback nodes, such that t1 <= 
t2

• We call a pointstamp active if it corresponds to at least one unprocessed 
event

• A pointstamp p has a certain number of precursor pointstamps, i.e. the other 
pointstamps which could-result-in p

• Once p has no more precursors, then the scheduler may deliver any 
notification with pointstamp p, as can be sure no later event is on the way

Pointstamps
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What is timely dataflow?
Pointstamps

Could p1 = ([2, 4], C) result in p2 = ([2, 4], B) ? 

What about the other way around?
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What is timely dataflow?

• How many events are associated with a pointstamp p? 

• Scheduler keeps a list of Occurrence Counts, updated according to:

• Scheduler keeps handling events for p until OC drops to 0

Occurrence count
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What is timely dataflow?

• Need to define how to initialise the computation. 

• We start off by assigning a pointstamp for epoch 1 at each input vertex, (with 
OC=1)

• When the epoch is finished at some vertex, this is signalled by assigning a 
new pointstamp for epoch 2 as before. The old pointstamp is then removed.

Initialisation
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What is timely dataflow?

• When an input vertex marks the end of an epoch, any pointstamps that had 
the input pointstamp as their precursor have their precursor count 
decremented

• Any pointstamp with a precursor count of zero then becomes part of the 
‘frontier’ set of pointstamps

• The scheduler can deliver notifications for frontier pointstamps freely, until 
their occurrence count drops to zero

• When OC[p] = 0, p is no longer active: any pointstamps with p as precursor 
have their precursor count decremented.

Putting it all together
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What is timely dataflow?

• Events tracked through dataflow using pointstamps

• Message sent/received along edges for low latency

• Notifications delivered at vertices to indicate when to perform computation

• Occurrence and precursor counts indicate dependencies between 
pointstamps, and calculated by considering time taken to traverse minimum 
paths between locations

• Removing input pointstamps for epochs allows computation to drain out the 
system

Summary
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NAIAD Framework

• Graph processing

• Differential dataflow – graphs can propagate changes quickly, e.g. for 
connected components, without recomputing the entire algorithm

• Distributed workflow using worker-specific schedulers

• Local occurrence and precursor counts are kept by each worker, and updates 
to these are broadcasted as necessary (i.e. incremented/decremented 
according to rules already discussed, with optimisations)

• Checkpoint and Restore methods for each vertex provides fault tolerance

(And more!!)
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Conclusion and discussion

• Difficult to see precisely where Naiad fits: by authors’ own admission, 
possible to build it by combining more than one other system

• Development on .NET API ceased shortly after release

• There is ongoing development in Rust however

My thoughts
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• If interested, see also Derek Murray presenting Naiad at SOSP https://www.youtube.com/watch?v=yyhMI9r0A9E&t=273s

• And Frank McSherry’s short explanation of timely dataflow https://www.youtube.com/watch?v=yOnPmVf4YWo

• And also McSherry’s demonstration of differential dataflow https://channel9.msdn.com/posts/Frank-McSherry-Introduction-to-Naiad-and-
Differential-Dataflow

• The original naiad implementation is found at https://github.com/MicrosoftResearch/Naiad , as mentioned is no longer maintained, but 
McSherry was still working more recently on an implementation in Rust https://github.com/frankmcsherry/timely-dataflow
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