
Alexander Frost for R244

NAIAD: A Timely Dataflow System
Derek G. Murray, Frank McSherry, Rebecca Isaacs, 
Michael Isard, Paul Barham, Martín Abadi
(Microsoft Research Silicon Valley)
2013



Presentation Structure

• What is NAIAD?

• Brief recap: batch + stream processors

• What is timely dataflow?

• NAIAD framework

• Conclusion and discussion

2 of 23



What is NAIAD?

• Want the high throughput of batch processing systems?

• And the low latency of stream processors?

• Do you also need to handle incremental 
and iterative computation?

• Naiad does all of this and more!! 

3 of 23



Brief recap
Batch processors

• Input data grouped, e.g. per hour, per N transactions
• Data is processed all together
• Use cases: time-insensitive, or completeness requirements

Map ReduceIN OUT

…

QUERY

4 of 23



Brief recap
Stream processors

• Continuous input
• Data processed as soon as input active
• Use case: time-critical, estimations okay

Map ReduceIN OUT

…

QUERY

5 of 23



Brief recap
Existing systems

• Batch processors: high latency for queries
• Stream processors like MillWheel have no support for iteration
• Trigger based systems support iteration on data streams by updating 

shared state (such as key-value tables, c.f. Oolong), but no 
consistency guarantees

• Enter Naiad’s timely dataflow model

6 of 23



What is timely dataflow?
Overview

• Timestamps
• Loop contexts
• Message passing and notifications
• Pointstamps (time-and-location)
• Pointstamp dependencies
• Consistency guarantees

7 of 23



What is timely dataflow?
Traditional timestamps

• Timestamps affixed to input data to simulate batch processing
• Not a new idea in itself – used by processors like MillWheel to make 

certain guarantees about output
• Useful when real time data arrives in system out of order, (e.g. event 

at 1402hrs not seen until 1408hrs)
• Naiad assigns each input an integer epoch

8 of 23



What is timely dataflow?

• Naiad supports iteration using loop contexts

• Top-level streaming context contains entire computation, and loop contexts 
may be nested

• Loop contexts always have:

• Ingress node

• Egress node 

• Feedback node 

Loop contexts

9 of 23



What is timely dataflow?

• Each loop context modifies the timestamp of each message:

• Feedback nodes increment loop counter ck

• Ingress nodes increment dimension of loop counter, (egress decrement)

Naiad timestamps

10 of 23



What is timely dataflow?

• Naiad sends messages between vertices along edges:

• OnRecv(Edge e, Message msg, Timestamp t)

• SendBy(Edge e, Message msg, Timestamp t)

• Notifications provide a way to be certain no more OnRecv calls with some 
particular timestamp are incoming:

• OnNotify(Timestamp t)

• NotifyAt(Timestamp t)

Message passing

11 of 23



What is timely dataflow?
Message passing

U V

this.SendBy(uv, msg1, t1)

V.OnRecv(uv, msg1, t1)
{ … }

12 of 23



What is timely dataflow?

• Mustn’t send messages back in time!

• If v.OnRecv(e, msg, t1) is called, can only invoke calls of SendBy and NotifyAt
using timestamp t2, with t2 >= t1

• Additionally, system must ensure that if V.OnNotify(t2) is called, this means 
there can be no further invocations of V.OnRecv(e, msg, t1) for t1 <= t2

• These constraints allow both low latency processing (using SendBy and 
OnRecv) as well as consistency in output where required (using notifications)

Constraints

13 of 23



What is timely dataflow?

• Input data affixed with integer epoch (‘batch’)

• Loop contexts provide a way to compare data order (timestamps)

• Messages sent/received provide low latency

• Notification delivery provides consistency

• Problem: when can notifications actually be delivered (which timestamp)? 

Data ordering

14 of 23



What is timely dataflow?

• Suppose we have some notification to deliver to a particular vertex. We need 
to work out when this delivery ‘event’ can occur.

• Possible future timestamps constrained by current set of unprocessed events 
(messages + notifications), i.e. we cannot deliver a notification if it has any 
earlier dependencies.

• Each event has a timestamp and a location, either an edge or vertex. Naiad 
expresses these as pointstamps

Pointstamps

15 of 23



What is timely dataflow?

• The pointstamp (t1, l1) could-result-in (t2, l2) if there is a path between l1 and 
l2, through the various ingress, egress and feedback nodes, such that t1 <= 
t2

• We call a pointstamp active if it corresponds to at least one unprocessed 
event

• A pointstamp p has a certain number of precursor pointstamps, i.e. the other 
pointstamps which could-result-in p

• Once p has no more precursors, then the scheduler may deliver any 
notification with pointstamp p, as can be sure no later event is on the way

Pointstamps

16 of 23



What is timely dataflow?
Pointstamps

Could p1 = ([2, 4], C) result in p2 = ([2, 4], B) ? 

What about the other way around?

17 of 23



What is timely dataflow?

• How many events are associated with a pointstamp p? 

• Scheduler keeps a list of Occurrence Counts, updated according to:

• Scheduler keeps handling events for p until OC drops to 0

Occurrence count

18 of 23



What is timely dataflow?

• Need to define how to initialise the computation. 

• We start off by assigning a pointstamp for epoch 1 at each input vertex, (with 
OC=1)

• When the epoch is finished at some vertex, this is signalled by assigning a 
new pointstamp for epoch 2 as before. The old pointstamp is then removed.

Initialisation

19 of 23



What is timely dataflow?

• When an input vertex marks the end of an epoch, any pointstamps that had 
the input pointstamp as their precursor have their precursor count 
decremented

• Any pointstamp with a precursor count of zero then becomes part of the 
‘frontier’ set of pointstamps

• The scheduler can deliver notifications for frontier pointstamps freely, until 
their occurrence count drops to zero

• When OC[p] = 0, p is no longer active: any pointstamps with p as precursor 
have their precursor count decremented.

Putting it all together

20 of 23



What is timely dataflow?

• Events tracked through dataflow using pointstamps

• Message sent/received along edges for low latency

• Notifications delivered at vertices to indicate when to perform computation

• Occurrence and precursor counts indicate dependencies between 
pointstamps, and calculated by considering time taken to traverse minimum 
paths between locations

• Removing input pointstamps for epochs allows computation to drain out the 
system

Summary

21 of 23



NAIAD Framework

• Graph processing

• Differential dataflow – graphs can propagate changes quickly, e.g. for 
connected components, without recomputing the entire algorithm

• Distributed workflow using worker-specific schedulers

• Local occurrence and precursor counts are kept by each worker, and updates 
to these are broadcasted as necessary (i.e. incremented/decremented 
according to rules already discussed, with optimisations)

• Checkpoint and Restore methods for each vertex provides fault tolerance

(And more!!)

22 of 23



Conclusion and discussion

• Difficult to see precisely where Naiad fits: by authors’ own admission, 
possible to build it by combining more than one other system

• Development on .NET API ceased shortly after release

• There is ongoing development in Rust however

My thoughts

23 of 23



References

• Murray, D., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M. 2013. Naiad: A Timely Dataflow System. In Proceedings of the 24th 
ACM Symposium on Operating Systems Principles (SOSP). ACM.

• Mitchell, C., Power, R., and Li, J. 2012. Oolong: Asynchronous distributed applications made easy. Proceedings of the Asia-Pacific Workshop 
on Systems, APSYS’12.

• Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and 
Sam Whittle 2013. MillWheel: Fault-Tolerant Stream Processing at Internet Scale. In Very Large Data Bases (pp. 734–746).

• If interested, see also Derek Murray presenting Naiad at SOSP https://www.youtube.com/watch?v=yyhMI9r0A9E&t=273s

• And Frank McSherry’s short explanation of timely dataflow https://www.youtube.com/watch?v=yOnPmVf4YWo

• And also McSherry’s demonstration of differential dataflow https://channel9.msdn.com/posts/Frank-McSherry-Introduction-to-Naiad-and-
Differential-Dataflow

• The original naiad implementation is found at https://github.com/MicrosoftResearch/Naiad , as mentioned is no longer maintained, but 
McSherry was still working more recently on an implementation in Rust https://github.com/frankmcsherry/timely-dataflow

https://www.youtube.com/watch?v=yyhMI9r0A9E&t=273s
https://www.youtube.com/watch?v=yOnPmVf4YWo
https://channel9.msdn.com/posts/Frank-McSherry-Introduction-to-Naiad-and-Differential-Dataflow
https://github.com/MicrosoftResearch/Naiad
https://github.com/frankmcsherry/timely-dataflow

