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ABSTRACT
�e speed of deep neural networks training has become a big bot-
tleneck of deep learning research and development. For example,
training GoogleNet by ImageNet dataset on one Nvidia K20 GPU
needs 21 days [11]. To speed up the training process, the current
deep learning systems heavily rely on the hardware accelerators.
However, these accelerators have limited on-chip memory com-
pared with CPUs. To handle large datasets, they need to fetch
data from either CPU memory or remote processors. We use both
self-hosted Intel Knights Landing (KNL) clusters and multi-GPU
clusters as our target platforms. From an algorithm aspect, current
distributed machine learning systems [5] [18] are mainly designed
for cloud systems. �ese methods are asynchronous because of
the slow network and high fault-tolerance requirement on cloud
systems. We focus on Elastic Averaging SGD (EASGD) [28] to
design algorithms for HPC clusters. Original EASGD [28] used
round-robin method for communication and updating. �e com-
munication is ordered by the machine rank ID, which is ine�cient
on HPC clusters.

First, we redesign four e�cient algorithms for HPC systems to
improve EASGD’s poor scaling on clusters. Async EASGD, Async
MEASGD, and Hogwild EASGD are faster than their existing coun-
terparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all
the comparisons. Finally, we design Sync EASGD, which ties for
the best performance among all the methods while being determin-
istic. In addition to the algorithmic improvements, we use some
system-algorithm codesign techniques to scale up the algorithms.
By reducing the percentage of communication from 87% to 14%, our
Sync EASGD achieves 5.3× speedup over original EASGD on the
same platform. We get 91.5% weak scaling e�ciency on 4253 KNL
cores, which is higher than the state-of-the-art implementation.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;

KEYWORDS
Distributed Deep Learning, Knights Landing, Scalable Algorithm

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
speci�c permission and/or a fee. Request permissions from permissions@acm.org.
SC17, Denver, CO, USA
© 2017 ACM. 978-1-4503-5114-0/17/11. . . $15.00
DOI: 10.1145/3126908.3126912

ACM Reference format:
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1 INTRODUCTION
For deep learning applications, larger datasets and bigger models
lead to signi�cant improvements in accuracy [1]. However, the com-
putational power for training deep neural networks has become a
big bo�leneck. �e current deep networks require days or weeks to
train, which makes real-time interaction impossible. For example,
training ImageNet by GoogleNet on one Nvidia K20 GPU needs
21 days [11]. Moreover, the neural networks are rapidly becoming
more and more complicated. For instance, state-of-the-art Residual
Nets have 152 layers [9] while the best networks four years ago
(AlexNet [14]) had only 8 layers. To speed up the training process,
the current deep learning systems heavily rely on hardware acceler-
ators because they can provide highly �ne-grained data-parallelism
(e.g. GPGPUs) or fully-pipelined instruction-parallelism (e.g. FPGA).
However, these accelerators have limited on-chip memory com-
pared with CPUs. To handle big models and large datasets, they
need to fetch data from either CPU memory or remote processors at
runtime. �us, reducing communication and improving scalability
are critical issues for distributed deep learning systems.

To explore architectural impact, in addition to multi-GPU plat-
form, we choose the Intel Knights Landing (KNL) cluster as our tar-
get platform. KNL is a self-hosted chip with more cores than CPUs
(e.g. 68 or 72 vs 32). Compared with its predecessor Knights Corner
(KNC), KNL signi�cantly improved both computational power (6
T�ops vs 2 T�ops for single precision) and memory bandwidth
e�ciency (450 GB/s vs 159 GB/s for STREAM benchmark). More-
over, KNL introduced MCDRAM and con�gurable NUMA, which
are highly important for applications with complicated memory
access pa�erns. We design communication-e�cient deep learning
methods on GPU and KNL clusters for be�er scalability.

Algorithmically, current distributed machine learning systems
[5] [18] are mainly designed for cloud systems. �ese methods
are asynchronous because of the slow network and high fault-
tolerance requirement on cloud systems. A typical HPC cluster’s
bisection bandwidth is 66.4 Gbps (NERSC Cori) while the data
center’s bisection bandwidth is around 10 Gbps (Amazon EC2).
However, as mentioned before, the critical issues for current deep
learning system are speed and scalability. �erefore, we need to
select the right method as the starting point. Regarding algorithms,
we focus on Elastic Averaging SGD (EASGD) method since it has
a good convergence property [28]. Original EASGD used a round-
robin method for communication. �e communication is ordered
by the machine rank ID. At any moment, the master can interact
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with just a single worker. �e parallelism is limited to the pipeline
among di�erent workers. Original EASGD is ine�cient on HPC
systems.

First, we redesign four e�cient distributed algorithms to improve
EASGD’s poor scaling on clusters. By changing the round-robin
style to parameter-server style, we got Async EASGD. A�er adding
momentum [24] to Async EASGD, we got Async MEASGD. �en we
combine Hogwild method and EASGD updating rule to get Hogwild
EASGD. Async EASGD, Async MEASGD, and Hogwild EASGD are
faster than their existing counterparts (i.e. Async SGD, Async
MSGD, and Hogwild SGD, resp.). Finally, we design Sync EASGD,
which ties for the best performance among all the methods while
being deterministic (Figure 8). Besides the algorithmic re�nements,
the system-algorithm codesign techniques are important for scaling
up deep neural networks. �e techniques we introduce include:
(1) using single-layer layout and communication to optimize the
network latency and memory access, (2) using multiple copies of
weights to speedup the gradient descent, and (3) partitioning the
KNL chip based on data/weight size and reducing communication
on multi-GPU systems. By reducing the communication percent
from 87% to 14%, our Sync EASGD achieves 5.3× speedup over
original EASGD on the same platform. Using ImageNet dataset to
train GoogleNet on 2176 KNL cores, the weak scaling e�ciency of
Intel Ca�e is 87% while our implementation is 92%. Using ImageNet
to train VGG on 2176 KNL cores, the weak scaling e�ciency of
Intel Ca�e is 62% while our implementation is 78.5%. To highlight
the di�erence between existing methods and our methods, we list
our three major contributions:

(1) Sync EASGD and Hogwild EASGD algorithms. We have
documented our process in arriving at these two algorithms, which
ultimately perform be�er than existing methods. �e existing
EASGD uses round-robin updating rule. We refer to the exist-
ing method as Original EASGD. We �rst changed the round-robin
rule to parameter-server rule to arrive at Async EASGD. �e dif-
ference between Original-EASGD and Async-EASGD is that the
updating rule of Original-EASGD is ordered while Async-EASGD
is unordered. Adding momentum to that we arrived at Async
MEASGD. Neither Async EASGD nor Async MEASGD were signif-
icantly faster than Original EASGD (Figure 8).

In both Original-EASGD and Async-EASGD, the master only
communicates with one worker at a time. �en we relaxed this
requirement to allow the master to communicate with multiple
workers at a time to get Hogwild EASGD. �e master �rst receives
multiple weights from di�erent workers. �e master then processes
these weights by the Hogwild (lock-free) Updating rule. We ob-
serve that the lock-free Hogwild makes Hogwild EASGD run much
faster than Original EASGD. For the convex case, we can prove the
algorithm is safe and faster under some assumptions1.

We used tree reduction algorithm to replace round-robin rule
to get Sync EASGD. Sync EASGD is much faster (Θ(logP) vs Θ(P)).
�is is highly important because deep learning researchers o�en
need to tune many hyperparameters, which is exetremly time-
consuming. While not being one of our major contributions, we
also documented the relative order of performance between inter-
mediate algorithms we have considered. For instance, we observe

1h�ps://www.cs.berkeley.edu/∼youyang/HogwildEasgdProof.pdf

Figure 1: �e KNL Architecture. Our version has 68 cores.

that Async EASGD is faster than Async SGD and Async MEASGD
is faster than Async MSGD.

(2)Algorithm-SystemCo-design formulti-GPU system. Af-
ter the algorithm-level optimization, we need to produce an e�cient
design on the multi-GPU system. We reduce the communication
overhead by changing the data’s physical locations. We also design
some strategies to overlap the communication with the computa-
tion. A�er the algorithm-system co-design, our implementation
achieves a 5.3x speedup over the Original EASGD.

(3) Use KNL cluster to speedup DNN training. GPUs are
good tools to train deep neural networks. However, we also want
to explore more hardware options for deep learning applications.
We choose KNL because it has powerful computation and memory
units. Section 6.2 describes the optimization for small dataset DNN
training on KNL platform. In our experiments, using an 8-core CPU
to train CIFAR-10 dataset takes 8.2 hours. However, CIFAR-10 is
only 170 MB, which can not make full use of KNL’s 384 GB memory.
�is optimization helps us to �nish the training in 10 minutes. �e
optimization in Section 5.2 is designed on KNL cluster, but it can
be used on regular clusters.

2 BACKGROUND
We describe the Intel Knights Landing architecture, which is used
in this paper. We review necessary background on deep learning
for readers to understand this paper.

2.1 Intel Knights Landing Architecture
Intel Knights Landing (KNL) Architecture is the latest version of
Intel Xeon Phi. Compared with the previous version, i.e. Knights
Corner (KNC), KNL has slightly more cores (e.g. 72 or 68 vs 60).
Like KNC, each KNL core has 4 hardware threads and supports
512-bit instruction for SIMD data parallelism. �e major distinct
features of KNL include the following:

(1) Self-hostedPlatform�e traditional accelerators (e.g. FPGA,
GPUs, and KNC) rely on CPU for control and I/O management. For
some applications, the transfer path like PCIE may become a bo�le-
neck at runtime because the memory on accelerator is limited (e.g.
12 GB GDDR5 on one Nvidia K80 GPU). �e KNL does not need a
host. It is self-hosted by an operating system like CentOS 7.

(2) Better Memory KNL’s DDR4 memory size is much larger
than that of KNC (384 GB vs 16 GB). Moreover, KNL is equipped

https://www.cs.berkeley.edu/~youyang/HogwildEasgdProof.pdf
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with 16 GB Multi-Channel DRAM (MCDRAM). MCDRAM’s mea-
sured bandwidth is 475 GB/s (STREAM benchmark). �e bandwidth
of KNL’s regular DDR4 is 90 GB/s. MCDRAM has three modes: a)
Cache Mode: KNL uses it as the last level cache; b) Flat Mode: KNL
treats it as the regular DDR; c) Hybrid Mode: part of it is used as
cache, the other is used as the regular DDR memory (Figure 2).

(3) Con�gurable NUMA KNL supports all-to-all (A2A), quad-
rant/hemisphere (�ad/Hemi) and sub-NUMA (SNC-4/2) clustering
modes of cache operation. For A2A, memory addresses are uni-
formly distributed across all tag directories (TDs) on the chip. For
�ad/Hemi, the tiles are divided into four parts called quadrants,
which are spatially local to four groups of memory controllers.
Memory addresses served by a memory controller in a quadrant
are guaranteed to be mapped only to TDs contained in that quad-
rant. Hemisphere mode functions the same way, except that the
die is divided into two hemispheres instead of four quadrants. �e
SNC-4/2 mode partitions the chip into four quadrants or two hemi-
spheres, and, in addition, expose these quadrants (hemispheres)
as NUMA nodes. In this mode, NUMA-aware so�ware can pin
so�ware threads to the same quadrant (hemisphere) that contains
the TD and access NUMA-local memory.

2.2 DNN and SGD
We focus on Convolutional Neural Networks (CNN) [16] in this
section. Figure 3 is an illustration of CNN. CNN is composed of
a sequence of tensors. We refer to these tensors as weights. At
runtime, the input of CNN is a picture X (e.g. X is stored as a
32-by-32 matrix in Figure 3). A�er a sequence of tensor-matrix
operations, the output of CNN is an integer y (e.g. y ∈ {0, 1, 2, ..., 9}
in Figure 3). �e tensor-matrix operations can be implemented
by dense matrix-matrix multiplication, FFT, dense matrix-vector
multiplication, dense vector-vector add and non-linear transform
(e.g. Tanh, Sigmoid, and ReLU [7]).

Figure 3 is an example of hand-wri�en image recognition. �e
input pictureX should be recognized as 3 by a human. Ify is 3, then
the input picture is correctly classi�ed by the CNN framework. To
get the correct classi�cation, we need to get a set of working weights.
�e weights needs to be trained by using the real-world datasets.
For simplicity, let us refer to the weights as W , and the training
dataset as {Xi ,yi }, i ∈ {1, 2, ...,n}. n is the number of training
pictures. yi is the correct label for Xi . �e training process includes
three parts: 1) Forward Propagation, 2) Backward Propagation, and
3) Weight Update.

Forward Propagation Xi is passed from the �rst layer to the
last layer of the neural network (le� to right in Figure 3). �e output
is the prediction of Xi ’s label, which is referred to as ỹi .

Backward Propagation We get a numerical prediction error E
as the di�erence between yi and ỹi . �en we pass E from the last
layer to the �rst layer to get the gradient ofW , which is ∆W .

Weight Update We re�ne the CNN framework by updating the
weight: W ←W − η∆W , where η is a number called the learning
rate (e.g. 0.01).

We conduct the above three steps iteratively over all the samples
until the model is optimized (i.e. randomly picks a batch of samples
at each iteration). �is method is called Stochastic Gradient Descent
(SGD) [7]. Stochastic means we randomly pick a batch of b pictures

at each iteration. Usually b is an integer chosen from 16 to 2048. If
b is too large, SGD’s convergence rate usually will decrease [19].

2.3 Data Parallelism and Model Parallelism
Let us parallelize the DNN training process on P machines. �ere
are two major parallelism strategies for this: Data Parallelism (Fig.
4.1) and Model Parallelism (Fig. 4.2). All the later parallel methods
are the variants of these two methods.

Data Parallelism [5] �e dataset is partitioned into P parts
and each machine only gets one part. Each machine has a copy
of the neural network, hence the weights (W ). �e communica-
tion includes sum of all the gradients ∆Wi and broadcast of W .
�e �rst part of communication is conducted between Backward
Propagation and Weights Update. �e master updatesW byW ←
W − η∑P

i=1 ∆Wi a�er it gets all the sub-gradients ∆Wi from the
workers. �en the master machine broadcastsW to all the worker
machines, which is the second part of communication. Figure 4.1 is
an example of data parallelism on 4 machines.

Model Parallelism [3] Data parallelism replicates the neural
network itself on each machine while model parallelism partitions
the neural network into P pieces. Partitioning the neural network
means parallelizing the matrix operations on the partitioned net-
work. �us, model parallelism can get the same solution as the
single-machine case. Figure 4.2 shows model parallelism on 3 ma-
chines. �ese three machines partition the matrix operation of
each layer. However, because both the batch size (<= 2048) and the
picture size (e.g. 32×32) typically are relatively small, the matrix op-
erations are not large. For example, parallelizing a 2048×1024×1024
matrix multiplication only needs one or two machines. �us, state-
of-the-art methods o�en use data-parallelism ([1], [2], [5], [22]).

2.4 Evaluating Our Method
�e objective of this paper is designing distributed algorithms on
HPC systems to get the same or higher classi�cation accuracy
(algorithm benchmark) in a shorter time. If our optimization may
in�uence the convergence of algorithm, we report both the time
and accuracy. Otherwise, we only report the time for experimental
results. All algorithmic comparisons in this paper used the same
hardware (e.g. # CPUs, # GPUs, and # KNLs) and the same hyper-
parameters (e.g. batch size, learning rate). We do not compare
di�erent architectures (e.g. KNL vs K80 GPU) because they have
di�erent performance, power, and prices.

3 RELATEDWORK
In this section, we review the previous literature about scaling deep
neural networks on parallel or distributed systems.

3.1 Parameter Server (Async SGD)
Figure 5 illustrates the idea of parameter server or Asynchronous
SGD [5]. Under this framework, each worker machine has a copy of
weightW . �e dataset is partitioned to all the worker machines. At
each step, i-th worker computes a sub-gradient (∆Wi ) from its own
data and weight. �en the i-th worker sends ∆Wi to the master (i ∈
{1, 2, ..., P}). �e master receives ∆Wi , conducts the weight update,
and sends weight back to i-th worker machine. All the workers
�nish this step asynchronously, using �rst come �rst serve (FCFS).
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Figure 2: �e threemodes ofMCDRAM.Under CacheMode, MCDRAMacts as the last-level cache. Under FlatMode, MCDRAM
is part of RAM. Under Hybird Mode, part of MCDRAM acts as the last-level cache, and the rest of it acts as RAM.

Figure 3: �is �gure [20] is an illustration of Convolutional
Neural Network.

4.1 4.2

Figure 4: Methods of parallelism. 4.1 is data parallelism
on 4 machines. 4.2 is model parallelism on 3 machines.
Model parallelism partitions the neural network into P
pieces whereas data parallelism replicates the neural net-
work itself in each processor.

3.2 Hogwild (Lock Free)
�e Hogwild method [21] can be presented as a variant of Async
SGD. �e master machine is a shared memory system. For Async
SGD, if the sub-gradient from j-th worker arrives during the period
that the master is interacting with i-th worker, then W ←W −
η∆Wj can not be started beforeW ←W − η∆Wi is �nished (i , j ∈
{1, 2, ..., P}). �is means that there is a lock to avoid weight update
con�icts on the shared memory system (master machine). �e lock
makes sure the master only processes one sub-gradient at one time.
�e Hogwild method, however, removes the lock and allows the
master to process multiple sub-gradients at the same time. �e
proof of Hogwild’s lock-free convergence is in its paper [21].

Figure 5: �is �gure [5] is an illustration of Parameter
Server. Data is partitioned to workers. Each worker com-
putes a gradient and sends it to server for updating the
weight. �e updated model is copied back to wokers

3.3 EASGD (Round-Robin)
�e Elastic Averaging SGD (EASGD) method [28] can also be pre-
sented as a variant of Async SGD. Async SGD uses a FCFS strategy
for processing the sub-gradients asynchronously. EASGD uses a
round-robin strategy for ordered update, i.e. W ←W − η∆Wi can
not be started beforeW ←W −η∆Wi−1 is �nished (i ∈ {2, 3, ...,n}).
Also, EASGD requires the workers to conduct the update locally
(Equation (1)). Before all the workers conduct the local updating,
the master updates the center (or global) weight (Equation (2)). �e
ρ in Equation (1) and Equation (2) is a term that connects the global
and local parameters. �e framework of Original EASGD method
is shown in Algorithm 1.

W i
t+1 =W

i
t − η(∆W i

t + ρ(W i
t − W̄t )) (1)

W̄t+1 = W̄t + η
P∑
i=1

ρ(W i
t − W̄t ) (2)

3.4 Other methods
Li et al. [17] is focused on single-node memory optimization. �e
idea is included in our implemenation. �ere is some work [3], [15]
on scaling up deep neural networks by model parallelism method,
which is out of scope for this paper. �is paper is focused on data
parallelism. Low-precision representation of neural networks is
another direction of research. �e idea is to use low-precision
�oating point to reduce the computation and communication for
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Algorithm 1: Original EASGD on Multi-GPU system
master: CPU, workers: GPU1, GPU2, …, GPUP

Input: samples and labels: {Xi ,yi } i ∈ 1, ...,n
#iterations: T , batch size: b, #GPUs: G

Output: model weightW
1 Normalize X on CPU by standard deviation: E(X ) = 0 (mean)

and σ (X ) = 1 (variance)
2 InitializeW on CPU: random and Xavier weight �lling
3 for j = 1; j <= G; j++ do
4 create local weightWj on j-th GPU, copyW toWj

5 create global weight W̄1 on 0-th GPU, copyW to W̄1
6 for t = 1; t <= T ; t++ do
7 j = t mod G
8 CPU randomly picks b samples
9 CPU asynchronously copies b samples to j-th GPU

10 CPU sends W̄t to j-th GPU
11 Forward and Backward Propagation on j-th GPU
12 CPU getsW j

t from j-th GPU
13 j-th GPU updatesW j

t by Equation (1)
14 CPU updates W̄t by W̄t+1 = W̄t + ηρ(W j

t − W̄t )

ge�ing the acceptable accuracy ([4], [8], [10], [22]). We reserve this
for future study.

4 EXPERIMENTAL SETUP
4.1 Experimental Datasets
Our test datasets are Mnist [16], Cifar [13], and ImageNet [6], which
are the standard benchmarks for deep learning research. Descrip-
tions can be found in Table 1. �e application of Mnist dataset is
hardwri�en digits recognition. �e images of Mnist were grouped
into 10 classes (0, 1, 2, …, 9). �e application of Cifar dataset is
object recognition. Cifar dataset includes 10 classes: airplane, au-
tomobile, bird, cat, deer, dog, frog, horse, ship, truck. Each Cifar
image only belongs to one class. �e accuracy of random guess for
Mnist and Cifar image prediction is 0.1.

ImageNet [6] is a computer vision dataset of over 15 million
labeled images belonging to more than 20,000 classes. �e images
were collected from the web and labeled by human labelers us-
ing Amazon’s Mechanical Turk crowd-sourcing tool. An annual
competition called the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) has been held since 2010. ILSVRC uses a subset
of ImageNet with 1200 images in each of 1000 classes. In all, there
are roughly 1.2 million training images, 50,000 validation images,
and 150,000 testing images. In this paper, the ImageNet dataset
means ILSVRC-2012 dataset. �e accuracy of random guess for
ImageNet image prediction is 0.001.

4.2 Neural Network Models
We use the state-of-the-art DNN models to process the datasets in
this paper. �e Mnist dataset was processed by LetNet [16], which
is shown in Figure 3. �e Cifar dataset is processed by AlexNet
[14], which has 5 convolutional layers and 3 fully-connected layers.

Table 1: �e Test Datasets

Dataset Training Images Test Images Pixels Classes

Mnist [16] 60,000 10,000 28×28 10
Cifar [13] 50,000 10,000 3×32×32 10
ImageNet [6] 1.2 million 150,000 256×256 1000

ImageNet dataset is processed by GoogleNet [25] and VGG [25].
GoogleNet has 22 layers and VGG has 19 layers.

4.3 �e baseline
In Section 5, the Original EASGD is our baseline. �e original
EASGD method (Algorithm 1) uses round-robin approach for sched-
uling the way the master interacts with the workers. At any mo-
ment, the master can interact with just a single worker. Addition-
ally, the interactions of di�erent workers are ordered. �e (i + 1)-st
worker can not begin before i-th �nishes.

5 DISTRIBUTED ALGORITHM DESIGN
5.1 Redesigning the parallel SGD methods
In this section we redesign some e�cient parallel SGD methods
based on the existing methods (i.e. Original EASGD, Async SGD,
Async MSGD, and Hogwild SGD). We will use our methods to make
comparisons with the existing methods (i.e. we will plot accuracy
versus time, on the same data sets and computing resources). Since
the existing SGD methods were originally implemented on GPUs,
we also implement our methods on GPUs. �ese ideas work in the
same way for KNL chips because these methods are focused on
inter-chip processing rather than intra-chip processing.

Async EASGD �e original EASGD method (Algorithm 1) uses
round-robin approach for scheduling. �is method is ine�cient
because the computation and update of di�erent GPUs are ordered
(Section 3.3). �e (i + 1)-st worker can not begin before i-th �nishes.
Although this method has good fault-tolerance and convergence
properties, it is ine�cient. �erefore, our �rst optimization is to use
parameter-server update to replace the round-robin update. �e
di�erence between our Async EASGD and Original EASGD is that
we use �rst-come �rst-served (FCFS) strategy to process multiple
workers while they use ordered rule to process multiple workers.
We put the global (or center) weight W̄ on the master machine. �e
i-th worker machine has its own local weightW i . During the t-th
iteration, there are three steps:

• (1) i-th worker �rst sends its local weight W i
t to master

and master returns W̄t to i-th worker (i ∈ {1, 2, ..., P}).
• (2) i-th worker computes gradient ∆W i

t and receives W̄t .
• (3) master does the update based on Equation (2) and

worker does the update based on Equation (1).
From Figure 6.1 we can observe that our method Async EASGD

is faster than Async SGD.
Async MEASGD Momentum [24] is an important method to

accelerate SGD. �e updating rule of Momentum SGD (MSGD) is
shown in Equations (3) and (4). V is the momentum parameter,
which has the same dimension as the weight and gradient. µ is the
momentum rate. Rule of thumb is µ = 0.9 or a similar value. In our
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6.1 6.2

6.3 6.4

Figure 6: Original EASGD, Hogwild SGD, Async SGD, and
Async MSGD are the existing methods. All the comparisons
use the same hardware and data. Our methods are faster.
Each point on the �gure is a single train and test. For exam-
ple, Hogwild EASGD has 10 points in the �gure. It means
we run 10mutually independentHogwild EASGD caseswith
di�erent numbers of iterations (e.g. 1k, 2k, 3k, …, 10k). �e
experiments are conducted on 4 Tesla M100 GPUs that are
connected with a 96-lane, 6-way PCIe switch.

design, the updating rule of MEASGD master will be the same as
before (Equation (2)). �e updating rule of the i-th worker will be
changed to Equations (5) and (6). From Figure 6.2 we can observe
that our method Async MEASGD is faster and more stable than
Async MSGD.

Vt+1 = µVt − η∆Wt (3)

Wt+1 =Wt +Vt+1 (4)

V i
t+1 = µV

i
t − η∆W i

t (5)

W i
t+1 =W

i
t +V

i
t+1 − ηρ(W

i
t − W̄t ) (6)

Hogwild EASGD For Hogwild SGD, the lock for updating W
is removed to achieve a faster convergence. In the same way, for
regular EASGD, there should be a lock between W̄t+1 = W̄t +

ηρ(W i
t −W̄t ) andW̄t+1 = W̄t +ηρ(W j

t −W̄t ) (i, j ∈ {1, 2, ..., P}). �e
reason is thatW i

t andW
j
t may arrive at the same time. �us, we

remove this lock to get the Hogwild EASGD method. From Figure
6.3 we clearly observe that Hogwild EASGD is much faster than
Hogwild SGD. �e convergence proof of Hogwild EASGD can be
found in the appendix2.
2h�ps://www.cs.berkeley.edu/∼youyang/HogwildEasgdProof.pdf

Table 2: In�niBand Performance under α-β Model

Network α (latency) β (1/bandwidth)

Mellanox 56Gb/s FDR IB 0.7 × 10−6s 0.2 × 10−9s
Intel 40Gb/s QDR IB 1.2 × 10−6s 0.3 × 10−9s
Intel 10GbE NetE�ect NE020 7.2 × 10−6s 0.9 × 10−9s

Sync EASGD �e updating rules of Sync EASGD are Equations
(1) and (2). �e Sync EASGD contains �ve steps at iteration t :

• (1) the i-th worker computes its sub-gradient ∆W i
t based

on its data and weightW i
t (i ∈ {1, 2, ..., P}).

• (2) the master broadcasts W̄t to all the workers.
• (3) the system does a reduce operation to get

∑P
i=1W

i
t and

sends it to master.
• (4) the i-th worker updates its local weightW i

t based on
Equation (1).

• (5) the master updates W̄t based on Equation (2).
Among them, step (1) and step (2) can be overlapped, step (4)

and step (5) can be overlapped. From Figure 6.4 we observe that
Sync EASGD is faster than Original EASGD. Here, Sync EASGD
means Sync EASGD3 implementation detailed in Section 6.1.

7.1 Sync EASGD1

7.2 Sync EASGD2 and Sync EASGD3

Figure 7: �e architecture our Sync EASGD design on multi-
GPU system. C variable means Center Weight or Global
Weight, L variable means Local Weight.

We make an overall comparison by pu�ing these comparisons
together into Figure 8. Among them, Original SGD, Hogwild SGD,
Async SGD, and Async MSGD are the existing methods. Our
method is always faster than its counterpart as already seen in
Figure 6. We also observe that Sync EASGD or Hogwild EASGD is
the fastest method among them. Sync EASGD and Hogwild EASGD
are essentially tied for fastest. Sync EAGSD incorporates a number
of optimizations that we describe in more detail in sections 5.2 and
6. �e framework of our algorithm design is shown in Fig. 9, which
shows the di�erence between these methods.

https://www.cs.berkeley.edu/~youyang/HogwildEasgdProof.pdf
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Figure 8: To visualize the comparisons, we use error rate
(1.0 − accuracy) as the algorithm benchmark. �en we
use loд10 scale of error rate to make the comparisons more
clear. Among thesemethods, Original EASGD,Hogwild SGD,
Async SGD, and Async MSGD are the existing methods. �e
rest of them are our methods. Each point on the �gure is a
single run. For example, Sync EASGDhas 13 points in the�g-
ure. It means we run 13 mutually independent Sync EASGD
cases with di�erent numbers of iterations. It also means
longer time ormore iterations will help us to get a higher ac-
curacy, even with di�erent initiations. �e experiments are
conducted on 4 Tesla M100 GPUs that are connected with a
96-lane, 6-way PCIe switch.

Hogwild
EASGD

Hogwild
SGD

Async
SGD

Async
EASGD

Async
MEASGD

Async
MSGD

Original
EASGD

Sync
EASGD

Momentum Lock-Free

Lock-Free

Elastic Averging Elastic Averging

Tree Reduce Momentum

FCFS

Round-Robin

Existing
Method

New
Method

Figure 9: �is framework of our algorithm design. �e red
block means the existing method and the blue block means
the new method.

5.2 Single-Layer Communication
Current deep learning systems [11] allocate noncontiguous mem-
ory for di�erent layers of the neural networks. �ey also conduct
multiple rounds of communication for di�erent layers. We allo-
cate the neural networks in a contiguous way and pack all the
layers together and conduct one communication each time. �is
signi�cantly reduces the latency. From Figure 10 we can observe
the bene�t of this technique. �ere are two reasons for the im-
provement: (1) �e communication overhead of sending a n-word
message can be formulated as α-β model: (α + β × n) seconds. α is

Figure 10: �e bene�t of packed layer comes from re-
duced communication latency and continuous memory ac-
cess. Since this is Sync SGD, the red triangles and blue
squares should be at identical heights. �e reason for dif-
ferent heights is that a di�erent random number generator
seed is used for the two runs. �e example used Sync SGD
to process AlexNet (Section 4.2).

the network latency and β is the reciprocal of network bandwidth.
β is much smaller than α , which is the major communication over-
head (Table 2). �us, for transferring the same volume of data,
sending one big message is be�er than multiple small messages. (2)
�e continuous memory access has a higher cache-hit ratio than
the non-continuous memory access.

Algorithm 2: Sync EASGD1
master: CPU, workers: GPU1, GPU2, …, GPUP

Input: samples and labels: {Xi ,yi } i ∈ 1, ...,n
#iterations: T , batch size: b, # GPUs: G

Output: model weightW
1 Normalize X on CPU by standard deviation: E(X ) = 0 (mean)

and σ (X ) = 1 (variance)
2 InitializeW on CPU: random and Xavier weight �lling
3 for j = 1; j <= G; j++ do
4 create local weightW j

1 on GPUj , copyW toW j
1

5 create global weight W̄1 on CPU, copyW to W̄1
6 for t = 1; t <= T ; t++ do
7 for j = 1; j <= G; j++ do
8 CPU randomly picks b samples
9 CPU asynchronously copies b samples to j-th GPUj

10 Forward and Backward Propagation on all the GPUs
11 CPU broadcasts W̄t to all the GPUs
12 CPU gets

∑G
j=1W

j
t from all the GPUs

13 All the GPUs updateW j
t by Equation (1)

14 CPU updates W̄t by Equation (2)

6 ALGORITHM-ARCHITECTURE CODESIGN
6.1 Multi-GPU Optimization
In this section we show how we optimize EASGD step-by-step on
a multi-GPU system. We use Sync EASGD1, Sync EASGD2, and
Sync EASGD3 to illustrate our three-step optimization.
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6.1.1 Sync EASGD1. Algorithm 1 is the original EASGD algo-
rithm. Multi-GPU system implementation contains 8 potentially
time-consuming parts. For Algorithm 1, they are: (1) data I/O (In-
put and Output); (2) data and weight initialization (lines 1-2); (3)
GPU-GPU parameter communication (none); (4) CPU-GPU data
communication (line 9); (5) CPU-GPU parameter communication
(lines 10 and 12); (6) Forward and Backward propagation (line 11);
(7) GPU weight update (line 13); (8) CPU weight update (line 14). We
ignore parts (1) and (2) because they only cost a tiny percent of time.
GPU-GPU parameter communication means di�erent GPUs ex-
change weights. CPU-GPU data communication means GPU copies
a batch of samples each iteration. CPU-GPU parameter communi-
cation means CPU sends global weight W̄ to GPUs and receives
local weightsW i (i ∈ {1, 2, ..., P ) from GPUs. Parts (3), (4), and (5)
are communication. Parts (6), (7), and (8) are computation. A�er
benchmarking the code, we found the major overhead of EASGD is
communication (Figure 11), which costs 87% of the total training
time on an 8-GPU system. If we look deep into the communication,
we observe that CPU-GPU parameter communication costs much
more time than CPU-GPU data communication (86% vs 1%). �e
reason is that the size of weights (number of elements in W ) is
much larger than a batch of training data. For example, the weights
of AlexNet are 249 MB while 64 Cifar samples are only 64 × 32 × 32
× 3 × 4B = 768 KB. To solve this problem, we design Sync EASGD1
(Algorithm 2). In Sync EASGD1, P blocking send/receive opera-
tions can be e�ciently processed by a tree-reduction operation
(e.g. standard MPI reduction), which reduces the communication
overhead from P(α + |W |β) to loдP(α + |W |β). Our experiments
show that Sync EASGD1 achieves a 3.7× speedup over Original
EASGD (Table 3 and Figure 11).

Algorithm 3: Sync EASGD2 & Sync EASGD3
master: GPU1, workers: GPU1, GPU2, …, GPUP

Input: samples and labels: {Xi ,yi } i ∈ 1, ...,n
#iterations: T , batch size: b, # GPUs: G

Output: model weightW
1 Normalize X on CPU by standard deviation: E(X ) = 0 (mean)

and σ (X ) = 1 (variance)
2 InitializeW on CPU: random and Xavier weight �lling
3 for j = 1; j <= G; j++ do
4 create local weightW j

1 on GPUj , copyW toW j
1

5 create global weight W̄1 on GPU1, copyW to W̄1
6 for t = 1; t <= T ; t++ do
7 for j = 1; j <= G; j++ do
8 CPU randomly pick b samples
9 CPU asynchronously copy b samples to j-th GPUj

10 Forward and Backward Propagation on all the GPUs
11 GPU1 broadcasts W̄t to all the GPUs
12 GPU1 gets

∑G
j=1W

j
t from all the GPUs

13 All the GPUs updateW j
t by Equation (1)

14 GPU1 updates W̄t by Equation (2)

6.1.2 Sync EASGD2. From Table 3 we observe that CPU-GPU
communication is still the major overhead of communication. �us,
we want to move either data or weights from CPU to GPU to reduce
the communication overhead. We can not put all the data on the
GPU card because the on-chip memory is very limited compared
with CPU. For example, the training part of ImageNet dataset is 240
GB while the on-chip memory of K80 is only around 12 GB. Since
the algorithm needs to randomly pick samples from the dataset,
we can not predict which part of dataset will be used by a certain
GPU. �us, we put all the training and test data on the CPU. We
only copy the required data to the GPUs at runtime each iteration.
On the other hand, the weights are usually smaller than 1 GB,
which can be stored on a GPU card. For example, the large DNN
model VGG-19 [23] is 575 MB. Also, the weight will be reused every
iteration (Algorithm 3). �us, we put all the weights on GPU to
reduce communication overhead. We refer to this method as Sync
EASGD2, which achieves 1.3× speedup over Sync EASGD1. �e
framework of Sync EASGD2 is shown in Algorithm 3.

6.1.3 Sync EASGD3. We further improve the algorithm by over-
lapping the computation with the communication. We maximize
the overlapping bene�t inside the steps 7-14 of Algorithm 3. Be-
cause Forward/Backward Propagation uses the data from the CPU,
steps 7-10 are a critical path. �e GPU-GPU communication (steps
11-12) is not dependent on steps 7-10. �us, we overlap steps 7-
10 and steps 11-12 in Algorithm 3, yielding Sync EASGD3, which
achieves a 1.1× speedup over Sync EASGD2. In all, Sync EASGD3
reduced the communication ratio from 87% to 14% and achieves
5.3× speedup over original EASGD for ge�ing the same accuracy
(Table 3 and Figure 11). �us we refer to Sync EASGD3 as Com-
munication E�cient EASGD. We also design similar algorithm
for KNL cluster, which is shown in Algorithm 4, discussed next.

Algorithm4:Communication E�cient EASGD on KNL cluster
master: KNL1, workers: KNL1, KNL2, …, KNLP
Input: samples and labels: {Xi ,yi } i ∈ 1, ...,n

#iterations: T , batch size: b, # KNL Nodes: K
Output: model weightW

1 All nodes read the samples and labels from disk
2 Normalize X on all KNLs by standard deviation: E(X ) = 0

(mean) and σ (X ) = 1 (variance)
3 InitializeW on 1-st KNL: random and Xavier weight �lling
4 KNL1 broadcastsW to all KNLs
5 for j = 1; j <= K ; j++ parallel do
6 create local weightW j

1 on KNLj , copyW toW j
1

7 create global weight W̄1 on KNL1, copyW to W̄1
8 for t = 1; t <= T ; t++ do
9 for j = 1; j <= K ; j++ parallel do

10 KNLj randomly pick b samples from local memory
11 Forward and Backward Propagation on all the KNLs
12 KNL1 broadcasts W̄t to all the KNLs
13 KNL1 gets

∑K
j=1W

j
t from all the KNLs

14 All the KNLs updateW j
t by Equation (1)

15 KNL1 updates W̄t by Equation (2)
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11.1

11.2

Figure 11: Breakdown of time for EASGD variants. para
means parameter or weight. comm means communication.
Computation includes forward/backward, gpu update, and
cpu update. �ere is an overlap between for/backward and
cpu-gpu para comm for Original EASGD. Let us refer to the
non-overlap version as Original EASGD*. Sync EASGD3 re-
duced the communication percentage from 87% to 14% and
got 5.3× speedup over original EASGD for the same accuracy
(98.8%). �e test is for MNIST dataset on 4 GPUs. More infor-
mation is in Table 3.

6.2 Knights Landing Optimization
Our platform’s KNL chip has 68 cores or 72 cores, which is much
more than that of a regular CPU chip. To make full use of KNL’s
computational power, data locality is highly important. Also, we
need to make the best use of KNL’s cluster mode (Section 2.1) at the
algorithm level. We partition the KNL chip into 4 parts like �ad
or SNC-4 mode. �e KNL acts like a 4-node NUMA system. In this
way, we also replicate the data into 4 parts and each NUMA node
gets one part. We make 4 copies of weights and each NUMA node
has one copy. A�er all the NUMA nodes compute the gradients,
we conduct a tree-reduction operation to sum these all gradients.
Each NUMA node can get one copy of the gradient sum and use
it to update its own weights. In this way, di�erent NUMA nodes
do not need to communicate with each other unless they share the
gradients. �is is a divide-and-conquer method. �e divide step
includes replicating the data and copying the weights. �e conquer
step is to sum up the gradients from all partitions. �is can speedup
the algorithm by the faster propagation of gradients.

In the same way, we can partition the chip into 8 parts, 16 parts,
and so on. Let us partition the chip into P parts. �e limitation of
this method is that the fast memory (cache and MCDRAM) should

Figure 12: Partitioning a KNL chip into group and making
each group process one local weight can improve the perfor-
mance.

be able to handle P copies of weight and P copies of data. Figure 12
shows that this method works for P ≤ 16 when we use AlexNet to
process Cifar dataset. �e reason is that the AlexNet is 249 MB and
one Cifar data copy is 687 MB. �us, MCDRAM can hold at most
16 copies of weight and data. Concretely, for achieving the same
accuracy (0.625), 1-part case needs 1605 sec, 4-part case needs 1025
sec, 8-part case needs 823 sec, and 16-part case only needs 490 sec.
We achieve 3.3× speedup by copying weight and data to make full
use of the fast memory and reduce communication.

7 ADDITIONAL RESULTS AND DISCUSSIONS

13.1

13.2

Figure 13: �e bene�ts of using more machines and more
data: (1) get the target accuracy in a shorter time, and (2)
achieve a higher accuracy in a �xed time. Objective Loss
means Error (lower is better).
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Table 3: Breakdownof time for EASGDvariants. parameans parameter orweight. commmeans communication. Computation
includes for/backward, gpu update, and cpu update. Sync EASGD3 reduced the communication percentage from 87% to 14%
and got 5.3× speedup over original EASGD for the same accuracy (98.8%). �ere is an overlap between for/backward and cpu-
gpu para comm for Original EASGD. Let us refer to the non-overlap version as Original EASGD*. �e reason why Original
EASGD*’s for/backward time is larger than the Sync methods (30s vs 6s) is that only one GPU (worker) is working at each
iteration. Original EASGD/EASGD* need more iterations to get the same accuracy. �e test is for Mnist dataset on 4 GPUs.

Method accuracy iterations time gpu-gpu para cpu-gpu data cpu-gpu para for/backward gpu update cpu update comm ratio

Original EASGD* 0.988 5,000 69s 0% 0.5% 51% 44% 0.5% 4% 52%
Original EASGD 0.988 5,000 41s 0% 1% 86% 3% 1% 9% 87%
Sync EASGD1 0.988 1,000 11s 1% 3% 21% 55% 4% 16% 25%
Sync EASGD2 0.988 1,000 8.2s 16% 4% 0% 74% 6% 0% 20%
Sync EASGD3 0.988 1,000 7.7s 10% 4% 0% 79% 7% 0% 14%

Table 4: Weak Scaling Time and E�ciency for ImageNet Dataset

Models 68 cores 136 cores 272 cores 544 cores 1088 cores 2176 cores 4352 cores
GoogleNet (300 Iters Time) 1533s 1590s 1608s 1641s 1630s 1662s 1674s
GoogleNet (E�ciency) 100% 96.4% 95.3% 93.4% 94.0% 92.3% 91.6%
VGG (80 Iters Time) 1318s 1440s 1482s 1524s 1634s 1679s 1642s
VGG (E�ciency) 100% 91.5% 89.0% 86.5% 80.7% 78.5% 80.2%

7.1 Comparison with Intel Ca�e
Intel Ca�e is the state-of-the-art implementation for both single-
node and multi-node on Xeon and Xeon Phi platforms. Because
this paper is focused on inter-node (distributed) algorithm, we
use Intel Ca�e for single-node implementation. We only compare
with Intel Ca�e for scaling because we have the same single-node
performance (baseline) with Intel Ca�e.

Machine Learning researchers focus on weak scaling because
they need higher accuracy when they use more machines and larger
datasets in a �xed time (e.g. draw a vertical line in Figure 13). On
the other hand, weak scaling also means ge�ing the target accuracy
in a shorter time by using more machines and larger data (e.g. draw
a horizontal line in Figure 13). Figure 13 shows the bene�t of using
more machines and more data. Each node processes one copy of
Cifar dataset and the batch size is 64. In the way, we increase the
total data size as we increase the number of machines.

For large-scale weak scaling study, we use GoogleNet and VGG
to process the ImageNet dataset. Each node has one copy of the
ImageNet dataset (240 GB). We increase the number of cores from
68 to 4352. �e data size increases as we increases the number of
machines. �e results of our weak scaling study are shown in Table
4. Compared with Intel’s implementation, we have a higher weak
scaling e�ciency. For GoogleNet on 2176 cores, the weak scaling
of Intel Ca�e is 87% while that of our implementation is 92%. For
VGG on 2176 cores, the weak scaling of Intel Ca�e is 62% while
that of our implementation is 78.5%.

7.2 �e Impact of Batch Size
When changing the batch size, the users need to change learning
rate and momentum at the same time. For small batch sizes (e.g
from 32 to 1024), increasing the batch size generally speeds up
DNN training because larger batch size makes BLAS functions run

more e�ciently. Increasing the batch size beyond a threshold (e.g.
4096) generally slows down DNN training because in that regime,
the optimization space around minima becomes sharper, requiring
more epochs to get the same accuracy [12]. For medium batch size
(e.g. from 1024 to 4096), the users need to tune batch size, learning
rate, and momentum together to speed up the training.

8 CONCLUSION
�e current distributed machine learning algorithms are mainly
designed for cloud systems. Due to cloud systems’ slow network
and high fault-tolerance requirement, these methods are mainly
asynchronous. However, asynchronous methods are usually unre-
producible, nondeterministic, and unstable. EASGD has a good con-
vergence property. Nevertheless, the round-robin method makes
it ine�cient on HPC systems. In this paper, we designed e�cient
methods for HPC clusters to speedup deep learning applications’
time-consuming training process. Our methods Async EASGD,
Async MEASGD, and Hogwild EASGD are faster than their existing
counterpart methods. Sync EASGD or Hogwild EASGD method is
the fastest one among our competing methods in this paper. Sync
EASGD3 achieves 5.3× speedup over original EASGD for the same
accuracy (98.8%) while being deterministic and reproducible. We
achieve 91.6% weak-scaling e�ciency, which is higher than the
state-of-the-art implementation.
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10 ARTIFACT DESCRIPTION APPENDIX
10.1 �e Source Code
We share our source code online3, with everything necessary in-
cluded.

10.2 �e dataset
First, due to the limit of �le size, we can not upload the datasets.
To run our code, the readers need to download the datasets. For
Mnist dataset, the readers can download it from this link4. For Cifar
dataset, the readers can download it from this link5. For Imagenet
dataset, the readers can download it from this link6.

10.3 Dependent Libraries
All our codes are wri�en in C++, and the users need to add -
std=c++11 to compile our codes. For GPU codes, we use CUDA 7.5
and CuBLAS and CuDNN 5.0 libraries. We use Nvidia NCCL for
GPU-to-GPU communication. We use MPI for distributed process-
ing on the multi-GPU multi-node system. For KNL codes, since
this paper is focused on inter-node (distributed) algorithm, we use
Intel Ca�e for single-node implementation. �e Intel Ca�e depends
on Intel MKL for basic linear algebra functions. To install and use
Intel Ca�e, we install the follow libraries: (1) protobuf/2.6.1, (2)
boost/1.55.0, (3) g�ags/2.1.2, (4) glog/0.3.4, (5) snappy/1.1.3, (6) lev-
eldb/1.18, (7) lmdb/0.9.18, and (8) opencv/3.1.0-nogui. We use MPI
for distributed processing on the KNL cluster.

10.4 Experimental Systems
We have two GPU clusters. �e �rst one has 16 nodes. Each node
has one Intel E5-1680 v2 3.00GHz CPU and two Nvidia Tesla K80
GPUs. �e two halves of the K80 are connected by a PLX Technol-
ogy, Inc. PEX 8747 48-lane PCIe switch. �e nodes are connected
by 56 Gbit/s In�niband. �e second cluster has 4 nodes. Each node
has one E5-2680 v3 2.50GHz CPU and eight Nvidia Tesla M40 GPUs.
Groups of 4 Tesla M100 GPUs are connected with a 96-lane, 6-way
PCIe switch. �e nodes are connected by 56 Gbit/s In�niband. We

3h�ps://www.cs.berkeley.edu/∼youyang/sc17code.zip
4Mnist dataset is at h�p://yann.lecun.com/exdb/mnist
5Cifar dataset is at h�p://www.cs.toronto.edu/ kriz/cifar-10-binary.tar.gz
6Imagenet dataset is at h�p://image-net.org/download

test the Knights Landing and CPU algorithm on NERSC’s Cori su-
percomputer, which has 2,004 Haswell CPU nodes (64,128 cores)
and 9,688 KNL nodes (658,784 cores in total, 68 cores per node) �e
CPU version is 16-core Intel Xeon Processor E5-2698 v3 at 2.3 GHz.
�e KNL version is Intel Xeon Phi Processor 7250 processor with
68 cores per node @ 1.4 GHz. �e interconnect for Cori is Cray
Aries with Dragon�y topology with 5.625 TB/s global bandwidth
(CPU) and 45.0 TB/s global peak bisection bandwidth (KNL).

10.5 Running our codes
A�er downloading our codes from SC17 submission system and
unzipping it. �e readers will get two folders: gpu and knl.

To run the GPU related codes, the readers need to enter the gpu
folder. �ere are eight subfolders in gpu folder. Each subfolder
corresponds to one method mentioned in this paper. For example,
a�er entering the mnist easgd async subfolder, the readers will
�nd a couple of �les. readubyte.cpp and readubyte.h are for
reading the dataset. �e algorithm is implemented in my nn.cu
and the readers can use Make�le to compile it. A�er compiling the
code, the readers can just execute run.sh �le to run the program.
�e parameter.txt �le de�nes the neural network structure. �e
results will be shown on screen and stored in .out �les. For running
the distributed code, the readers can enter the mpi easgd subfolder.
To compile the code, the readers just need to run compile.sh �le.
�en the readers can execute run.sh �le to run the program.

To run the KNL related codes, the readers need to enter the knl
folder. �ere are eight subfolders in knl folder. Each subfolder cor-
responds to one method mentioned in this paper. For example, a�er
entering the cifar average sync subfolder, the readers will �nd a
couple of �les. �e solver.prototxt �les de�ne the algorithmic set-
ting (e.g. # iterations, # learning rate, and # testing frequency). �e
train test.prototxt �les de�ne the structure of neural networks.
To compile the code, the readers just need to execute compile.sh
�le. A�er the compilation, the readers need to submit the program
to job management system. We use the slurm workload manager.
myknlrun.sl �le is our submission script. A�er �nishing the job,
the readers can use calacc.cpp to sum up the accuracy information
and caltime.cpp to sum up the time information.
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