
A Lightweight Infrastructure for Graph Analytics∗

Donald Nguyen, Andrew Lenharth and Keshav Pingali
The University of Texas at Austin, Texas, USA

{ddn@cs, lenharth@ices, pingali@cs}.utexas.edu

Abstract
Several domain-specific languages (DSLs) for parallel
graph analytics have been proposed recently. In this pa-
per, we argue that existing DSLs can be implemented on
top of a general-purpose infrastructure that (i) supports
very fine-grain tasks, (ii) implements autonomous, spec-
ulative execution of these tasks, and (iii) allows appli-
cation-specific control of task scheduling policies. To
support this claim, we describe such an implementation
called the Galois system.

We demonstrate the capabilities of this infrastructure
in three ways. First, we implement more sophisticated al-
gorithms for some of the graph analytics problems tack-
led by previous DSLs and show that end-to-end perfor-
mance can be improved by orders of magnitude even on
power-law graphs, thanks to the better algorithms facil-
itated by a more general programming model. Second,
we show that, even when an algorithm can be expressed
in existing DSLs, the implementation of that algorithm
in the more general system can be orders of magnitude
faster when the input graphs are road networks and sim-
ilar graphs with high diameter, thanks to more sophisti-
cated scheduling. Third, we implement the APIs of three
existing graph DSLs on top of the common infrastruc-
ture in a few hundred lines of code and show that even
for power-law graphs, the performance of the resulting
implementations often exceeds that of the original DSL
systems, thanks to the lightweight infrastructure.

∗This research was supported by NSF grants CCF 1337281, CCF
1218568, ACI 1216701, and CNS 1064956. Donald Nguyen was sup-
ported by a DOE Sandia Fellowship. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by NSF grant OCI-1053575.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522739

1 Introduction

Graph analysis is an emerging and important application
area. In many problem domains that require graph anal-
ysis, the graphs can be very large; for example, social
networks today can have a billion nodes. Parallel pro-
cessing is one way to speed up the analysis of such large
graphs, but writing efficient parallel programs, especially
for shared-memory machines, can be difficult for pro-
grammers.

Several domain-specific languages (DSLs) for graph
analytics have been proposed recently for simplifying the
task of writing these programs [1111, 1212, 1717–1919, 3131]. Pro-
grams are expressed as iterated application of vertex op-
erators, where a vertex operator is a function that reads
and writes a node and its immediate neighbors. Par-
allelism is exploited by applying the operator to mul-
tiple nodes of the graph simultaneously in rounds in a
bulk-synchronous style; coordinated scheduling inserts
the necessary synchronization to ensure that all the oper-
ations in one round finish before the next one begins.

In this paper, we argue that this programming model is
insufficient for high-performance, general-purpose graph
analytics where, by general-purpose, we mean diver-
sity both in algorithms and in the types of input graphs
being analyzed. We show that to obtain high perfor-
mance, some algorithms require autonomous schedul-
ing, in which operator applications are scheduled for
execution whenever their data becomes available. For
efficiency, autonomous scheduling requires application-
specific priority functions that must be provided by pro-
grammers and must therefore be supported by the pro-
gramming model. We also identify domain-specific op-
timizations that must be supported by such systems.

Since these features are properties of programming
models and not their implementations, we argue that con-
tinued improvement of DSLs that only provide for co-
ordinated execution of vertex programs is inadequate to
meet the challenges of graph analytics.

To support this argument, this paper introduces sev-
eral improvements to an existing system, Galois [1515],
that provide for a rich programming model with coordi-
nated and autonomous scheduling, and with and without

456

application-defined priorities. The main improvements
are: a topology-aware work-stealing scheduler, a priority
scheduler, and a library of scalable data structures.

We demonstrate the capabilities of the improved Ga-
lois infrastructure in three ways. First, we implement
more sophisticated algorithms for some of the graph ana-
lytics problems tackled by previous DSLs and show that
end-to-end performance can be improved by many or-
ders of magnitude even on power-law graphs, thanks to
better algorithms. Second, we show that even when an
algorithm can be expressed in existing DSLs, the imple-
mentation of that algorithm in the more general system
can be orders of magnitude faster when the input graphs
are road networks and similar graphs with high diameter,
thanks to more sophisticated scheduling policies. Third,
we implement the APIs of three existing graph DSLs on
top of the common infrastructure in a few hundred lines
of code and show that, even for power-law graphs, the
performance of the resulting implementations often ex-
ceeds that of the original DSL systems, thanks to the
lightweight infrastructure.

The rest of this paper is organized as follows. In Sec-
tion 22, we describe the programming models and DSLs
under consideration. In Section 33, we describe several
graph analytics problems as well as algorithms for solv-
ing them. In Section 44, we describe key improvements to
the Galois system. We evaluate the DSL programming
models and their implementations in Section 55. Lessons
and conclusions are presented in Section 66.

2 Programming models and DSLs
Many graph analysis algorithms can be written as itera-
tive programs in which each iteration updates labels on
nodes and edges using elementary graph operations. In
this section, we describe abstract programming models
for such algorithms and describe how these models are
implemented in four graph DSLs.

2.1 Model problem: SSSP

Given a weighted graph G = (V,E,w), where V is the
set of nodes, E is the set of edges, and w is a map from
edges to edge weights, the single-source shortest-paths
(SSSP) problem is to compute the distance of the short-
est path from a given source node s to each node. Edge
weights can be negative, but it is assumed that there are
no negative weight cycles.

In most SSSP algorithms, each node is given a label
that holds the distance of the shortest known path from
the source to that node. This label, which we call dist(v),
is initialized to 0 for s and ∞ for all other nodes. The
basic SSSP operation is relaxation [1010]: given an edge

Figure 1: Amorphous
data-parallelism pro-
gramming model.

Cycles Inst.

bfs 6007 2077
sssp 1521 308
dia 7265 2296
cc 5063 1380
pr 3190 541

Figure 2: Cycle and in-
struction counts of oper-
ators for several applica-
tions (application details
§33; measurement details
§5.15.1).

(u,v) such that dist(u) + w(u,v) < dist(v), the value of
dist(v) is updated to dist(u)+ w(u,v). Each relaxation,
therefore, lowers the dist label of a node, and when no
further relaxations can be performed, the resulting node
labels are the shortest distances from the source to the
nodes, regardless of the order in which the relaxations
were performed.

Nevertheless, some relaxation orders may converge
faster and are therefore more work-efficient than oth-
ers. For example, Dijkstra’s SSSP algorithm [1010] relaxes
each node just once by using the following strategy: from
the set of nodes that have not yet been relaxed, pick one
that has the minimal label.

However, Dijkstra’s algorithm does not have much
parallelism, so some parallel implementations of SSSP
use this rule only as a heuristic for priority scheduling:
given a choice between two nodes with different dist la-
bels, they pick the one with the smaller label, but they
may also execute some nodes out of priority order to ex-
ploit parallelism. The price of this additional parallelism
is that some nodes may be relaxed repeatedly. A balance
must be struck between controlling the amount of extra
work and exposing parallelism.

2.2 Programming models
To discuss common issues in graph analytics, it is con-
venient to use the terminology of amorphous data-
parallelism (ADP) [2626], a data-centric programming
model for expressing parallelism in regular and irregular
algorithms. The basic concepts of ADP are illustrated in
Figure 11. Active nodes are nodes in the graph where com-
putation must be performed; they are shown as filled dots
in Figure 11. The computation at an active node is called
an activity, and it results from the application of an op-
erator to the active node.11 The operator is a composition

1In some algorithms, it is more convenient to think in terms of active
edges rather than active nodes. Without loss of generality, in this paper,
we will use the term active nodes.

457

of elementary graph operations with other arithmetic and
logical operations. The set of graph elements read and
written by an activity is its neighborhood. The neigh-
borhood of the activity at each active node in Figure 11 is
shown as a “cloud” surrounding that node. If there are
several data structures in an algorithm, neighborhoods
may span multiple data structures. In general, neighbor-
hoods are distinct from the set of immediate neighbors of
the active node, and neighborhoods of different activities
may overlap. In a parallel implementation, the semantics
of reads and writes to such overlapping regions must be
specified carefully.

The key design choices when writing parallel graph
analytics programs can be summarized as follows: what
does the operator do, where in the graph is it applied, and
when is the corresponding activity executed.

What does the operator do? In general, the operator
expresses some computation on the neighborhood ele-
ments, and it is allowed to morph [2626] the graph struc-
ture of the neighborhood by adding or removing nodes
and edges. Graph analytics applications typically require
simpler operators that only update labels on neighbor-
hood nodes and edges, keeping the graph structure in-
variant, so we focus on these local computation operators
in this paper.

In some graph problems such as SSSP, operators can
be implemented in two general ways that we call push
style or pull style. A push-style operator reads the label
of the active node and writes to the labels of its neigh-
bors; information flows from the active node to its neigh-
bors. A push-style SSSP operator attempts to update the
dist label of the immediate neighbors of the active node
by performing relaxations with them. In contrast, a pull-
style operator writes to the label of the active node and
reads the labels of its neighbors; information flows to the
active node from its neighbors. A pull-style SSSP opera-
tor attempts to update the dist label of the active node by
performing relaxations with each neighbor of the active
node. In a parallel implementation, pull-style operators
require less synchronization since there is only one writer
per active node.

Figure 22 shows the average numbers of cycles and ex-
ecuted instructions for the operators (including runtime
overhead) of the graph analytics applications discussed
in this paper. We see that graph analytics algorithms
use very fine-grain operators that may execute only a few
hundred instructions.

Where is the operator applied? Implementations can
be topology-driven or data-driven.

In a topology-driven computation, active nodes are de-
fined structurally in the graph, and they are independent
of the values on the nodes and edges of the graph. The

Bellman-Ford SSSP algorithm is an example [1010]; this
algorithm performs |V | supersteps, each of which applies
a push-style or pull-style operator to all the edges. Prac-
tical implementations terminate the execution if a super-
step does not change the label of any node. Topology-
driven computations are easy to parallelize by partition-
ing the nodes of the graph between processing elements.

In a data-driven computation, nodes become active in
an unpredictable, dynamic manner based on data val-
ues, so active nodes are maintained in a worklist. In a
data-driven SSSP program, only the source node is ac-
tive initially. When the label of a node is updated, the
node is added to the worklist if the operator is push-style;
for a pull-style operator, the neighbors of that node are
added to the worklist. Data-driven implementations can
be more work-efficient than topology-driven ones since
work is performed only where it is needed in the graph.
However, load-balancing is more challenging, and care-
ful attention must be paid to the design of the worklist to
ensure it does not become a bottleneck.

When is an activity executed? When there are more
active nodes than threads, the implementation must de-
cide which active nodes are prioritized for execution and
when the side-effects of the resulting activities become
visible to other activities. There are two popular mod-
els that we call autonomous scheduling and coordinated
scheduling.

In autonomous scheduling, activities are executed with
transactional semantics, so their execution appears to be
atomic and isolated. Parallel activities are serializable,
so the output of the overall program is the same as some
sequential interleaving of activities. Threads retrieve ac-
tive nodes from the worklist and execute the correspond-
ing activities, synchronizing with other threads only as
needed to ensure transactional semantics. This fine-grain
synchronization can be implemented using speculative
execution with logical locks or lock-free operations on
graph elements. The side-effects of an activity become
visible externally when the activity commits.

Coordinated scheduling, on the other hand, restricts
the scheduling of activities to rounds of execution, as in
the Bulk-Synchronous Parallel (BSP) model [3333]. The
execution of the entire program is divided into a se-
quence of supersteps separated by barrier synchroniza-
tion. In each superstep, a subset of the active nodes
is selected and executed. Writes to shared-memory,
in shared-memory implementations, or messages, in
distributed-memory implementations, are considered to
be communication from one superstep to the following
superstep. Therefore, each superstep consists of updating
memory based on communication from the previous su-
perstep, performing computations, and then issuing com-
munication to the next superstep. Multiple updates to the

458

same location are resolved in different ways as is done is
the varieties of PRAM models, such as by using a reduc-
tion operation [1414].

Application-specific priorities Of the different al-
gorithm classes discussed above, data-driven, au-
tonomously scheduled algorithms are the most diffi-
cult to implement efficiently. However, they can con-
verge much faster than algorithms that use coordinated
scheduling [33]. Moreover, for high-diameter graphs like
road networks, data-driven autonomously scheduled al-
gorithms may be able to exploit more parallelism than
algorithms in other classes; for example, in BFS, if the
graph is long and skinny, the number of nodes at each
level will be quite small, limiting parallelism if coordi-
nated scheduling is used.

Autonomously scheduled, data-driven graph analytics
algorithms require application-specific priorities and pri-
ority scheduling to balance work-efficiency and paral-
lelism.

One example is delta-stepping SSSP [2121], the most
commonly used parallel implementation of SSSP. The
worklist of active nodes is implemented, conceptually,
as a sequence of bags, and an active node with label
d is mapped to the bag at position b d

∆
c, where ∆ is a

user-defined parameter. Idle threads pick work from
the lowest-numbered non-empty bag, but active nodes
within the same bag may execute in any order relative
to each other. The optimal value of ∆ depends on the
graph.

The general picture is the following. Each task t is
associated with an integer priority(t), which is a heuris-
tic measure of the importance of that task for early ex-
ecution relative to other tasks. For delta-stepping SSSP,
the priority of an SSSP relaxation task is the value b d

∆
c.

We will say that a task t1 has earlier priority than a task
t2 if priority(t1) < priority(t2). It is permissible to ex-
ecute tasks out of priority order, but this may possibly
lower work efficiency. A good DSL for graph appli-
cations must permit application programmers to specify
such application and input-specific priorities for tasks,
and the runtime system must schedule these fine-grain
tasks with minimal overhead and minimize priority in-
versions.

2.3 Graph analytics DSLs
Graph analytics DSLs usually constrain programmers to
use a subset of features described in Section 2.22.2.

GraphLab [1818] is a shared-memory programming
model for topology or data-driven computations with au-
tonomous or coordinated scheduling, but it is restricted
to vertex programs. A vertex program has a graph oper-
ator that can only read from and write to the immediate

bfs cc dia pr sssp bc

Galois C+A A C+A C A A
GraphLab A A A C A
Ligra C C C C C C
PowerGraph C C C C C
GraphChi C C

Figure 3: Summary of whether an application uses coordi-
nated (C) or autonomous (A) scheduling.

neighbors of the active node. There are several priority
scheduling policies available, but the implementation of
the priority scheduler is very different from the one used
in the Galois system (§4.1.24.1.2).

PowerGraph [1111] is a distributed-memory program-
ming model for topology or data-driven computations
with autonomous or coordinated scheduling, but it is re-
stricted to gather-apply-scatter (GAS) programs, which
are a subset of vertex programs. Graphs are partitioned
by edge where the endpoints of edges may be shared by
multiple machines. Values on shared nodes can be re-
solved with local update and distributed reduction. On
scale-free graphs, which have many high-degree nodes,
this is a useful optimization to improve load balancing.
PowerGraph supports autonomous scheduling, but the
scheduling policy is fixed by the system and users cannot
choose among autonomous policies.

GraphChi [1717] is a shared-memory programming
model for vertex programs that supports out-of-core pro-
cessing when the input graph is too large to fit in mem-
ory. GraphChi relies on a particular sorting of graph
edges in order to provide IO-efficient access to both the
in and out edges of a node. Since computation is driven
by the loading and storing of graph files, GraphChi only
provides coordinated scheduling.22

Ligra [3131] is a shared-memory programming model
for vertex programs with coordinated scheduling. A
unique feature of Ligra is that it switches between push
and pull-based operators automatically based on a user-
provided threshold.

3 Applications
As we argued in Section 22, graph analytics algorithms
can use rich programming models, but most existing
graph DSLs support only a simple set of features. In this
section, we describe how six graph analytics problems
are solved in five different systems in light of these pro-
gramming model restrictions. Most of the applications
are provided by the DSL systems themselves, except for

2GraphChi takes a program that could be autonomously scheduled
but imposes a coordinated schedule for execution.

459

GraphLab, for which we implemented the applications
ourselves. Figure 33 summarizes applications based on
one dimension introduced in Section 22: whether they use
autonomous or coordinated scheduling.

Single-source shortest-paths The best sequential and
parallel algorithms for SSSP use priority scheduling.
The Galois SSSP application uses the data-driven, au-
tonomously scheduled delta-stepping algorithm (§22), us-
ing auto-tuning to find an optimal value of ∆ for a given
input. GraphLab does not provide an SSSP applica-
tion, so we created one based on the Galois applica-
tion, using the priority scheduling available in GraphLab.
SSSP can be solved without using priorities by apply-
ing data-driven execution of the Bellman-Ford algorithm
(§22). Since PowerGraph and Ligra do not support pri-
ority scheduling, they both provide SSSP applications
based on this method.

Breadth-first search Breadth-first search (BFS) num-
bering is a special case of the SSSP problem in which all
edge weights are one. Depending on the structure of the
graph, there are two important optimizations. For low-
diameter graphs, it beneficial to switch between push and
pull-based operators, which reduces the total number of
memory accesses. For high-diameter graphs, it is ben-
eficial to use autonomous scheduling. Coordinated exe-
cution with high-diameter graphs produces many rounds
with very few operations per round, while autonomous
execution can exploit parallelism among rounds.

The Galois BFS application blends coordinated and
autonomous scheduling. Initially, the application uses
coordinated scheduling of the push and pull-based op-
erators. After a certain number of rounds of push-
based traversals, the application switches to prioritized
autonomous scheduling. The priority function favors ex-
ecuting nodes with smaller BFS numbers.

The Ligra application uses coordinated scheduling and
switches between push-based and pull-based operators
automatically. Since PowerGraph does not provide a
BFS application, we created one based on its SSSP appli-
cation. GraphLab does not provide a BFS application, so
we created one based on prioritized autonomous schedul-
ing.

Approximate diameter The diameter of a graph is the
maximum length of the shortest paths between all pairs
of nodes. The cost of computing this exactly is pro-
hibitive for any large graph, so many applications call for
an approximation of the diameter (DIA) of a graph. In
this paper, we limit ourselves to computing the diameter
of unweighted graphs.

The Galois application is based on finding pseudo-
peripheral nodes in the graph. It begins by computing
a BFS from an arbitrary node. Then, it computes another
BFS from the node with maximum distance, discovered
by the first BFS. In the case of ties for maximum dis-
tance, the algorithm picks a node with the least degree. It
continues this process until the maximum distance does
not increase. Each BFS is an instance of the blended al-
gorithm described above.

GraphLab does not provide an application for this
problem; we created one based on the pseudo-peripheral
algorithm. Ligra provides an approximate diameter ap-
plication that uses the coordinated execution of BFS
from k starting nodes at the same time. The k parame-
ter is chosen such that the search data for a node fits in a
single machine word. PowerGraph includes an approxi-
mate diameter application based on probabilistic count-
ing, which is used to estimate the number of unique ver-
tex pairs with paths with a distance at most k. When the
estimate converges, k is an estimation of the diameter of
the graph.

Betweenness centrality Betweenness centrality (BC)
is a measure of the importance of a node in a graph.
A popular algorithm by Brandes [44] computes the be-
tweenness centrality of all nodes by using forward and
backward breadth-first graph traversals. The Galois ap-
plication is based on a priority-scheduled, pull-based al-
gorithm for computing betweenness centrality. The pri-
ority function is based on the BFS number of a node.
The Ligra application switches between pull and push-
based operators with coordinated execution, which can
have significant overhead on large diameter graphs.

Connected components In an undirected graph, a con-
nected component (CC) is a maximal set of nodes that
are reachable from each other.

Galois provides a parallel connected components ap-
plication based on a concurrent union-find data structure.
It is a topology-driven computation where each edge of
the graph is visited once to add it to the union-find data
structure.

PowerGraph, GraphChi and Ligra include applications
based on iterative label propagation. Each node of the
graph is initially given a unique id. Then, each node up-
dates its label to be the minimum value id among itself
and its neighbors. This process continues until no node
updates its label; it will converge slowly if the diameter
of the graph is high.

GraphLab does not provide an algorithm for finding
connected components; we implemented one based on
the label propagation algorithm.

460

PageRank PageRank (PR) is an algorithm for comput-
ing the importance of nodes in an unweighted graph.

GraphLab, GraphChi, PowerGraph and Ligra have
two coordinated push-based applications, which are
either topology-driven or data-driven. We use the
topology-driven application in all cases. A possible pri-
ority function is to prefer earlier execution of nodes with
the greatest change in value; although none of the PageR-
ank applications evaluated use this function.

GraphChi has both a vertex program application as
well as a gather-apply-scatter application. We use the
latter because it is slightly faster.

Galois provides a pull-based PageRank application
that reduces the memory overhead and synchronization
compared to push-based applications.

4 The Galois system

The Galois system is an implementation of the amor-
phous data-parallelism (ADP) programming model pre-
sented in Section 2.22.2. Application programmers are
given a sequential programming language without ex-
plicitly parallel programming constructs like threads and
locks. Key features of the system are the following.

• Application programmers specify parallelism im-
plicitly by using an unordered-set iterator [2626]
which iterates over a worklist of active nodes. The
worklist is initialized with a set of active nodes be-
fore the iterator begins execution. The execution of
a iteration can create new active nodes, and these are
added to the worklist when that iteration completes
execution.

• The body of the iterator is the implementation of
the operator, and it is an imperative action that reads
and writes global data structures. Iterations are re-
quired to be cautious: an iteration must read all el-
ements in its neighborhood before it writes to any
of them [2626]. In our experience, this is not a sig-
nificant restriction since the natural way of writing
graph analytics applications results in cautious iter-
ations.

• The relative order in which iterations are executed
is left unspecified in the application code; the only
requirement is that the final result should be iden-
tical to that obtained by executing the iterations se-
quentially in some order. An optional application-
specific priority order for iterations can be speci-
fied with the iterator [2323], and the implementation
tries to respect this order when it schedules itera-
tions (§4.14.1).

• The system exploits parallelism by executing iter-
ations in parallel. To ensure serializability of iter-
ations, programmers must use a library of built-in
concurrent data structures for graphs, worklists, etc.
(§4.24.2). These library routines expose a standard API
to programmers, and they implement lightweight
synchronization to ensure serializability of itera-
tions, as explained below.

Inside the data structure library, the implementation of
a data structure operation, such as reading a graph node
or adding an edge between two nodes, acquires logical
locks on nodes and edges before performing the opera-
tion. If the lock is already owned by another iteration,
the iteration that invoked the operation is rolled back, re-
leasing all its acquired locks, and is retried again later.
Intuitively, the cautiousness of iterations reduces the syn-
chronization problem to the dining philosopher’s prob-
lem [77], obviating the need for more complex solutions
like transactional memory.

Another useful optimization is when an operator only
performs a simple update to machine word or when trans-
actional execution is not needed at all. For these cases,
all data structure methods have an optional parameter
that indicates whether an operation always or never ac-
quires locks. Experienced users can disable locking and
use machine atomic instructions if desired.

An accumulating collection is a collection of elements
that supports concurrent insertion of new elements but
does not need to support concurrent reads of the collec-
tion. Coordinated scheduling policies can be built from
multiple autonomously scheduled loops and an accumu-
lating collection data structure, which is provided by the
Galois library (§4.24.2). For example, loop 1 executes, pop-
ulating a collection with work that should be done by
loop 2. Then, loop 1 finishes, and loop 2 iterates over the
collection generated by loop 1, and so on. Control logic
can be placed between loops, allowing the expression of
sophisticated coordinated strategies like the pull versus
push optimization (§22).

4.1 Scheduler

The core Galois scheduler is aware of the machine topol-
ogy, and is described in Section 4.1.14.1.1. Priority schedul-
ing can be layered on top of this scheduler as described
in Section 4.1.24.1.2.

4.1.1 Topology-aware bags of tasks

When there are no application-specific priorities, the Ga-
lois scheduler uses a concurrent bag to hold the set
of pending tasks (active nodes). The bag (depicted in
Figure 4a4a) allows concurrent insertion and retrieval of

461

Chunk
Core

0

Package 0

Core
1

Package 1

Stack of
Chunks

(a) A bag.

Local
Map 1 3 3 7

Bag1 Bag3 Bag7

1 3 7
Global
Map

Core
0

Core
1

(b) Map in obim.

Figure 4: Organization of scheduling data structures.

unordered tasks and is implemented in a distributed,
machine-topology-aware way as follows.

• Each core has a data structure called a chunk, which
is a ring-buffer that can contain 8–64 tasks (size
chosen at compile time). The ring-buffer is manipu-
lated as a stack (LIFO)33: new tasks are pushed onto
the ring buffer, and tasks are popped from it when
the core needs work.

• Each package has a list of chunks. This list is ma-
nipulated in LIFO order.

• When the chunk associated with a core becomes
full, it is moved to the package-level list.

• When the chunk associated with a core becomes
empty, the core probes its package-level list to ob-
tain a chunk. If the package-level list is also empty,
the core probes the lists of other packages to find
work. To reduce traffic on the inter-package con-
nection network, only one hungry core hunts for
work in other packages on behalf of all hungry cores
in a package.

4.1.2 Priority scheduling

Priority scheduling is used extensively in operating sys-
tems, but relatively simple implementations suffice in
that context because tasks are relatively coarse-grained:
OS tasks may execute in tens or hundreds of millisec-
onds, whereas tasks in graph analytics take only mi-
croseconds to execute, as shown in Figure 22. Therefore,
the overheads of priority scheduling in the OS context are
masked by the execution time of tasks, which is not the
case in graph analytics, so solutions from the operating
systems area cannot be used here.

Another possibility is to use a concurrent priority
queue, but we were unable to get acceptable levels of
performance with lock-free skip-lists [2929] and other ap-
proaches in the literature (these alternatives are described
in more detail at the end of this section). In this section,

3It is possible to manipulate the bag in FIFO-style as well, but we
omit this possibility to keep the description simple.

we describe a machine-topology-aware, physically dis-
tributed data structure called obim that exploits the fact
that priorities are “soft,” so the scheduler is not required
to follow them exactly.

Overview Unlike the basic scheduler of Section 4.1.14.1.1
which uses just a bag, the obim scheduler uses a se-
quence of bags, where each bag is associated with one
priority level. Tasks in the same bag have identical prior-
ities and can therefore be executed in any order; however,
tasks in bags that are earlier in the sequence are sched-
uled preferentially over those in later bags. This is shown
pictorially as the Global Map in Figure 4b4b. This map is
sparse since it contains bags only at entries 1, 3 and 7.
Threads work on tasks in bag 1 first; only if a thread does
not find a task in bag 1 does it look for work in the next
bag (bag 3). If a thread creates a task with some priority
and the corresponding bag is not there in the global map,
the thread allocates a new bag, updates the global map,
and inserts the task into that bag.

The global map is a central data structure that is read
and written by all threads. To prevent it from becoming
a bottleneck and to reduce coherence traffic, each thread
maintains a software-controlled lazy cache of the global
map, as shown in Figure 4b4b. Each local map contains
some portion of the global map that is known to that
thread, but it is possible for a thread to update the global
map without informing other threads.

The main challenge in the design of obim is getting
threads to work on early priority work despite the dis-
tributed, lazy-cache design. This is accomplished as fol-
lows.

Implementation of global/local maps The thread-
local map is implemented by a sorted, dynamically resiz-
able array of pairs. Looking up a priority in the thread-
local map is done using a binary search. Threads also
maintain a version number representing the last version
of the global map they synchronized with.

The global map is represented as a log-based struc-
ture which stores bag-priority pairs representing insert
operations on the logical global map. Each logical insert
operation updates the global version number.

Updating the map: When a thread cannot find a bag
for a particular priority using only its local map, it must
synchronize with the global map and possibly create a
new mapping there. A thread replays the global log from
the point of the thread’s last synchronized version to the
end of the current global log. This inserts all newly cre-
ated mappings into the thread’s local map. If the right
mapping is still not found, the thread will acquire a write
lock, replay the log again, and append a new mapping to
the global log and its local map. Some care must be taken
with the implementation of the global log to ensure that

462

the log can be appended in the presence of concurrent
readers without requiring locks.

Pushing a task: A thread pushing a task uses its local
map to find the correct bag into which to insert. Fail-
ing that, the thread updates its local map from the global
map, as above, possibly creating a new mapping, and it
uses the found or created bag for the push operation.

Retrieving a task: To keep close to the ideal sched-
ule, all threads must be working on important (earliest
priority) work. When a task is executed, it may cre-
ate one or more new tasks with earlier priority than it-
self because priorities are arbitrary application-specific
functions. If so, the thread executes the task with the
earliest priority and adds all the other tasks to the local
map. Threads search for tasks with a different priority
only when the bag in which they are working becomes
empty; the threads then scan the global map looking for
important work. This procedure is called the back-scan.

Because a scan over the entire global map can be ex-
pensive, especially if there are many bags (which of-
ten happens with high-diameter graphs), an approximate
consensus heuristic is used to locally estimate the earliest
priority work available and to prevent redundant back-
scans, which we call back-scan prevention. Each thread
publishes the priority it is working at by writing it to
shared memory. When a thread needs to scan for work,
it looks at this value for all threads that share the same
package and uses the earliest priority it finds to start the
scan for work. To propagate information between pack-
ages, in addition to scanning all the threads in its pack-
age, one leader thread per package will scan the other
package leaders. This restriction allows most threads to
incur only a small amount of local communication. Once
a thread has a starting point for a scan, it simply tries to
pop work from each bag from the scan point onwards.

Evaluation of design choices To evaluate our design
choices, we implemented several de-optimized variants
of the obim scheduler. Figure 5b5b lists the variants, which
focus on two main optimizations: (i) the use of dis-
tributed bags and (ii) back-scan prevention. We disable
distributed bags by replacing the per-package lock-free
stacks inside the bag with a single lock-free stack shared
by all threads. We disable back-scan prevention by al-
ways starting the priority scan from the earliest priority.

Figure 66 shows the machines we used for the evalu-
ation. The numa8x4 is an SGI Ultraviolet, which is a
NUMA machine. The other machines are Intel Xeon
machines with multiple packages connected by Intel’s
Quick Path Interconnect.

Figure 5a5a shows the speedup of SSSP relative to the
best overall single-threaded execution time on the road
graph described in Section 5.15.1. We can see that back-
scan prevention is critical for performance: without this

m2x4 m4x10 numa8x4

dmn
cmn

cmb

dmb

dmn
cmn
cmb

dmb

dmn
cmn
cmb

dmb

0

3

6

9

12

2 4 6 8 0 10 20 30 40 0 10 20 30

Threads

S
p

e
e

d
u

p

(a) Speedup of variants on road graph (input details §5.15.1).

Backscan Prevention

No Yes

Centralized Bag cmn cmb
Distributed Bag dmn dmb (obim)

(b) Obim variants.

Figure 5: Scaling of obim and its variants for sssp.

P C/P GHz L3 (MB) RAM (GB) Model

m2x4 2 4 2.93 8 24 X5570
m2x8 2 8 2.70 20 32 E5-2680
m4x10 4 10 2.27 24 128 E7-4860
numa8x4 8 4 1.87 18 128 E7520

Figure 6: Evaluation machines. P is the number of pack-
ages. C/P is the number of cores per package.

optimization (cmn and dmn), speedup is never more than
2.5 on any machine for any thread count, but with this
optimization (cmb and dmb), speedup rises to about 12
on 20 threads on the m4x10 machine.

Using distributed bags is also important for perfor-
mance: without this optimization, speedup is never more
than 5 on any machine. It is interesting to note that with-
out back-scan prevention, a distributed bag is less effi-
cient than a centralized one on this input. This is because
it is more efficient to check that a (single) centralized
bag is empty than it is to perform this check on a (per-
package) distributed bag.

Related work Using concurrent priority queues for
task scheduling has been explored previously [55, 1313, 2929,
3232]. Our experience with the most common implemen-
tation, concurrent skip-lists [2929], revealed poor perfor-
mance on our applications. Improved performance can
be achieved by using bounded priorities [3030], but the ba-
sic problem of lack of scalability remains. Chazelle in-
vestigated approximate priorities [88] but only considered
sequential implementations.

463

Another possibility is to use a concurrent priority
queue for each thread, with work-stealing from other pri-
ority queues if the local priority queue becomes empty.
Variations of this idea have been used previously in the
literature [22, 2424], and it is also used in GraphLab. How-
ever, the work efficiency of the resulting implementa-
tion is often poor because early priority work generated
by one thread does not diffuse quickly enough to other
threads.

Yet another possibility is to use a concurrent priority
queue for each thread, with logically partitioned graphs
and the owner-computes rule [2727] for task assignment.
This policy is well-suited for distributed systems and has
been used in distributed graph traversal algorithms [2525]
but will perform poorly when work is localized to a sub-
set of partitions.

4.2 Scalable library and runtime

Memory allocation Galois data structures are based
on a scalable memory allocator that we implemented.
While there has been considerable effort towards cre-
ating scalable memory allocators [11, 2222, 2828], we have
found that existing solutions do not scale to large-scale
multi-threaded workloads that are very allocation inten-
sive nor do they directly address non-uniform memory
access (NUMA) concerns, which are important for even
modest-sized multi-core architectures.

Providing a general, scalable memory allocator is a
large undertaking, particularly because Galois supports
morph applications that modify graphs by adding and re-
moving nodes and edges. For graph analytics applica-
tions, memory allocation is generally restricted to two
cases: allocations in the runtime (including library data
structures) and allocations in an activity to track per-
activity state.

For the first case, the Galois runtime system uses a slab
allocator, which allocates memory from pools of fixed-
size blocks. This allocator is scalable but cannot handle
variable-sized blocks efficiently due to the overhead of
managing fragmentation. The second case involves allo-
cations from user code, which may require variable-sized
allocation, but also have a defined lifetime, i.e., the dura-
tion of an activity. For this case, the Galois system uses
a bump-pointer region allocator.

The slab allocator has a separate allocator for each
block size and a central page pool, which contains huge
pages allocated from the operating system. Each thread
maintains a free list of blocks. Blocks are allocated first
from the free list. If the list is empty, the thread acquires
a page from the page pool and uses bump-pointer alloca-
tion to divide the page into blocks.

The page pool is NUMA-aware; freed pages are re-
turned to the region of the pool representing the memory

node they were allocated from.
Allocating pages from the operating system can be a

significant scalability bottleneck [99, 3434], so to initialize
the page pool, each application preallocates some num-
ber of pages prior to parallel execution; the exact amount
varies by application.

The bump-pointer allocator manages allocations of
per-activity data structures, which come from tempo-
raries created by user code in the operator. This allocator
supports standard C++ allocator semantics, making it us-
able with all standard containers. The allocator is backed
by a page from the page pool. If the allocation size ex-
ceeds the page size (2 MB), the allocator falls back to
malloc.

Each activity executes on a thread, which has its own
instance of the bump-pointer allocator. The allocator is
reused (after being reset) between iterations on a thread.
Since the lifetimes of the objects allocated are bound to
an activity, all memory can be reclaimed at once at the
end of the activity.

Topology-aware synchronization The runtime library
performs optimizations to avoid synchronization and
communication between threads. Communication pat-
terns are topology-aware, so that the most common syn-
chronization is only between cores on the same package
and share the same L3 cache. Communication between
these cores is cheap. For example, instead of using a
standard Pthread barrier, the runtime uses a hybrid bar-
rier where a tree topology is built across packages, but
threads in a package communicate via a shared counter.
This is about twice as fast as the classic MCS tree bar-
rier [2020]. A similar technique, signaling trees, can be ap-
plied to signal threads to execute, which is used to begin
parallel execution.

Code size optimizations Galois provides a rich pro-
gramming model that requires memory allocation, task
scheduling, application-specific task priorities, and spec-
ulative execution. Each of these features incurs some
runtime cost. In general, since tasks can create new tasks,
the support code for an operator must check if new tasks
were created and if so hand them to the scheduler. How-
ever, the operators for many algorithms do not create new
tasks; although this check requires only about 4 instruc-
tions (at least one of which is a load and one of which
is a branch), this amounts to almost 2% of the number
of instructions in an average SSSP task. For applications
with fine-grain tasks, generality can quickly choke per-
formance.

To reduce this overhead, Galois does not generate code
for features that are not used by an operator. It uses a
collection of type traits that statically communicate the

464

Feature LoC

Vertex Programs 0
Gather-Apply-Scatter (synchronous engine) 200
Gather-Apply-Scatter (asynchronous engine) 200
Out-of-core 400
Push-versus-pull 300
Out-of-core + Push-versus-pull (additional) 100

Figure 7: Approximate lines of code for each DSL feature.

features of the programming model not needed by an op-
erator to the runtime system. At compile time, a special-
ized implementation for each operator is generated that
only supports the required features.

This simplification of runtime code has an important
secondary effect on performance: tight loops are more
likely to fit in the trace cache or the L1 instruction cache.
For very short operators, such as the one in BFS or SSSP,
this can result in a sizable performance improvement.

These kinds of code specialization optimizations re-
duce the overhead of dynamic task creation, priority
scheduling and load balancing for SSSP to about 140 in-
structions per activity; about half of which comes from
the priority scheduler.

4.3 Other DSLs in Galois
By using the features described above, graph analytics
DSLs such GraphLab, GraphChi and Ligra can be sim-
ply layered on top of Galois. Also, to demonstrate the
ease with which new DSLs can be implemented, we also
implemented a DSL that combines features of the Ligra
and GraphChi systems. Figure 77 gives the approximate
lines of code required to implement these features on top
of the Galois system.

Vertex Programs These are directly supported by Ga-
lois. Granularity of serializability can be controlled
through the use of Galois data structure parameters (§44).
For example, to achieve the GraphLab edge consistency
model, a user can enable logical locks when accessing a
vertex and its edges but not acquire logical locks when
accessing a neighboring node.

Gather-apply-scatter The PowerGraph implementa-
tion of GAS programs has three different execution
models: coordinated scheduling, autonomous schedul-
ing without consistency guarantees, and autonomous
scheduling with serializable activities. We call the Galois
implementation of PowerGraph PowerGraph-g. The
two autonomous scheduling models can be implemented
in Galois by concatenating the gather, apply and scatter

steps for a vertex into a single Galois operator, and ei-
ther always or never acquiring logical locks during the
execution of the operator.

The coordinated scheduling model can be imple-
mented by a sequence of loops, one for each phase of
the GAS programming model. The main implementation
question is how to implement the scatter phase, since we
must handle the case when multiple nodes send messages
to the same neighbor. The implementation we settled on
is to have per-package message accumulation, protected
by a spin-lock. The receiver accumulates the final mes-
sage value by reading from the per-package locations.
PowerGraph supports dividing up the work of a single
gather or scatter operation for a node among different
processing units. PowerGraph-g does not yet have this
optimization.

Out-of-core The GraphChi implementation of out-of-
core processing for vertex programs uses a carefully de-
signed graph file format to support IO-efficient access to
both the incoming and outgoing edge values of a node.
For the purpose of understanding how to provide out-of-
core processing using general reusable components, we
focus on supporting only a subset of GraphChi features.

Our implementation of out-of-core processing is based
on incremental loading of the compressed sparse row
(CSR) format of a graph and the graph’s transpose. The
transpose graph represents the incoming edges of a graph
and stores a copy of the edge values of the correspond-
ing outgoing edges. Since these values are copies, we
do not support updating edge values like GraphChi does;
however, none of the applications described in this paper
require updating edge values, and we leave supporting
this feature to future work.

Push-versus-pull The push-versus-pull optimization
in Ligra can be implemented as two vertex programs
that take an edge update rule and perform either a for-
ward or backward traversal based on some threshold. We
call the Galois implementation of Ligra Ligra-g. We
use the same threshold heuristic as Ligra. In order to
perform this optimization, the graph representation must
store both incoming and outgoing edges.

Push-versus-pull and out-of-core Since the push-
versus-pull optimization is itself a vertex program,
we can compose the push-versus-pull vertex program
with the out-of-core processing described above. We
call the DSL that combines both these optimizations
LigraChi-g. This highlights the utility of having a single
framework for implementing DSLs.

465

|V | |E| MB Weighted MB

rmat24 17 268 1207 2281
rmat27 134 2141 9637 18218
twitter40 42 1469 6207 12080
twitter50 51 1963 8262 16114
road 24 58 422 653

Figure 8: Input characteristics. Number of nodes and edges
is in millions. MB is the size of CSR representation.

5 Evaluation
In this section, we compare the performance of applica-
tions (§33) in the Ligra, GraphLab v1, PowerGraph v2.1
and Galois v2.2 systems.

5.1 Methodology
Our evaluation machine is machine m4x10 (see Fig-
ure 66). PowerGraph is a distributed-memory imple-
mentation, but it supports shared-memory parallelism
within a single machine. Ligra, GraphLab and Galois are
strictly shared-memory systems. Ligra requires the Cilk
runtime, which is not yet available with the GCC com-
piler. We compiled Ligra with the Intel ICC 12.1 com-
piler. All other applications were compiled with GCC
4.7 with the -O3 optimization level.

All runtimes are an average of at least two runs. For
out-of-core DSLs, the runtimes include the time to load
data from local disk. For all other systems, we exclude
this time.

Figure 88 summarizes the graph inputs we used. The
rmat24 (a = 0.5, b = c = 0.1, d = 0.3) and rmat27 (a =
0.57, b = c = 0.19, d = 0.05) graphs are synthetic scale-
free graphs. Following the evaluation done by Shun and
Blelloch [3131], we made the graphs symmetric. The twit-
ter40 [1616] and twitter50 [66] graphs are real-world social
network graphs. From twitter40 and twitter50, we use
only the largest connected component. Finally, road is
a road network of the United States obtained from the
DIMACS shortest paths benchmark.

The road graph is naturally weighted; we simply re-
move the weights when we need an unweighted graph.
The other four graphs are unweighted. To provide a
weighted input for the SSSP algorithms, we add a ran-
dom edge weight in the range (0,100] to each edge.

5.2 Summary of results
Figure 9a9a shows the runtime ratios of the Ligra and Pow-
erGraph applications compared to the Galois versions on
the twitter50 and road inputs for five applications. When
the Galois version runs faster, the data point is shown

as a cross; otherwise it is shown as a circle (e.g., bfs on
twitter50 and pr on road). The values range over several
orders of magnitude. The largest improvements are on
the road graph and with respect to PowerGraph.

Figure 9b9b shows the runtime ratios of the Ligra and
PowerGraph applications compared to the Ligra-g and
PowerGraph-g versions (that is, the implementations of
those DSLs in Galois). The performance of Ligra-g is
roughly comparable to Ligra. PowerGraph-g is mostly
better than PowerGraph. This shows that much of the
huge improvements in Figure 9a9a come not so much from
the better implementations described in Section 44 per se
but from the better programs that can be written when the
programming model is rich enough.

Comparison between the two figures can also be illu-
minating. For example, most of the ratios in Figure 9a9a
are greater than those in Figure 9b9b, but one notable ex-
ception is the behavior of PowerGraph with PageRank
on the road graph. The Galois improvement is about 10X
while the PowerGraph-g improvement is about 50X. This
suggests that the Galois application of PageRank, which
is pull-based, is not as good as the push-based algorithm
used by PowerGraph, on the road graph. Thus, Galois is
faster than PowerGraph on PageRank because of a more
efficient implementation of a worse algorithm.

In the following sections, we dig deeper into our per-
formance results.

5.3 Complete results
Figure 1010 gives our complete runtime results with 40
threads. The Ligra-g and PowerGraph-g results will be
discussed in Section 5.45.4. The PageRank (pr) times are
for one iteration of the topology-driven algorithm.

Overall, there is a wide variation in running times
across different programming models solving the same
problem. The variation is the least for PageRank, which
is coordinated and topology-driven. For the other graph
problems, the performance difference between program-
ming models can be several orders of magnitude and are
quite stark for the road input, whose large diameter heav-
ily penalizes coordinated scheduling of data-driven algo-
rithms.

The performance differences can be broadly attributed
to three causes.

In some cases, a poor algorithm was selected even
though a better algorithm exists and is expressible in the
DSL. The PowerGraph diameter application is an exam-
ple of this. The probabilistic counting algorithm just
takes too long on these inputs and gives worse results
than the Ligra algorithm, which also can be expressed
as a gather-apply-scatter program. Figure 1111 gives the
approximate diameters returned by each algorithm. The
PowerGraph algorithm quits after trying diameters up to

466

Ligra

Galois

PowerGraph

Galois

l

l

1

10

100

1000

10000

1

10

100

1000

10000

tw
itte

r5
0

ro
a
d

bfs cc dia pr sssp bfs cc dia pr sssp

R
u
n

ti
m

e
 R

a
ti
o
s

(a) Ratio of Ligra and PowerGraph runtimes to Galois run-
times.

Ligra

Ligra−g

PowerGraph

PowerGraph−g

l l

l l

l

47 51

1

2

1
2

4

6

tw
itte

r5
0

ro
a
d

bfs cc dia pr sssp bfs cc dia pr sssp

R
u
n

ti
m

e
 R

a
ti
o
s

(b) Ratio of Ligra and PowerGraph runtimes relative to
Ligra-g and PowerGraph-g runtimes. Larger ratios shown as
numbers rather than points.

Figure 9: Ratio of runtimes of applications with 40 threads
on machine m4x10 (see Figure 1010 for runtimes). Values
greater than 1 (shown as blue crosses) indicate how many
times faster the denominator system is than the numerator.

100. Both Galois and Ligra algorithms give strict lower-
bounds on the true diameter. The PowerGraph algorithm
gives a probabilistic estimate.

In some other cases, the same algorithm is expressed
in multiple DSLs, but one programming model just has
a better system implementation. All the PageRank ap-
plications are largely implementations of the same algo-
rithm. Differences between implementations are due to
differences in the runtime systems for each programming
model.

Finally, a DSL may be unable to capture an impor-
tant algorithmic optimization—such as when an impor-
tant optimization simply cannot be expressed in a DSL
or when the optimization can be expressed but the im-
plementation of the DSL cannot adequately exploit it.

rm
at

24

rm
at

27

tw
itt

er
40

tw
itt

er
50

ro
ad

bfs Galois 0.5 1.5 0.7 2.5 0.5
bfs Ligra-g 0.3 1.3 0.8 2.3 1.1
bfs PowerGraph-g 10.8 84.2 28.0 37.7 17.5
bfs GraphLab 12.4 83.9 26.7 60.5 4092.7
bfs Ligra 0.4 1.5 1.2 2.3 2.8
bfs PowerGraph 7.0 30.8 16.9 24.1 821.6

cc Galois 7.3 17.9 13.9† 39.6† 0.6
cc Ligra-g 1.3 11.1 16.6 31.9 62.3
cc PowerGraph-g 21.8 120.3 58.8 105.0 572.9
cc GraphLab 14.1 89.6 36.0 64.5 1033.5
cc Ligra 2.5 22.2 31.7 57.5 127.0
cc PowerGraph 39.0 129.5 115.5 201.5 2831.5

dia Galois 1.1 5.1 2.8 5.5 2.6
dia Ligra-g 2.3 21.4 19.7 44.3 8.6
dia PowerGraph-g 2029.7 oom 3816.1 4841.9 2466.6
dia GraphLab 84.8 478.2 192.0 257.1 21363.3
dia Ligra 1.7 11.8 19.3 45.8 20.1
dia PowerGraph 1239.0 oom 5376.0 7390.5 7047.5

pr Galois 1.3 10.3 6.5 10.7 0.5
pr Ligra-g 1.1 15.6 4.6 11.5 0.4
pr PowerGraph-g 2.1 21.0 11.7 14.0 0.2
pr GraphLab 4.9 47.6 45.8 30.7 14.6
pr Ligra 1.0 11.6 8.7 11.5 0.2
pr PowerGraph 8.4 38.8 20.4 30.2 10.6

sssp Galois 1.9 6.0 11.6 8.6 0.6
sssp Ligra-g 2.8 9.1 10.0 12.5 320.7
sssp PowerGraph-g 22.8 100.0 43.3 66.8 3317.3
sssp GraphLab 28.8 153.9 60.9 87.6 28.6
sssp Ligra 2.3 12.3 15.9 17.8 219.4
sssp PowerGraph 34.4 78.8 52.9 104.4 18919.2

bc Galois 1.3 13.7 13.0 12.0 1.3
bc Ligra-g 1.4 7.6 5.3 12.9 5.1
bc Ligra 1.2 5.5 6.8 13.9 6.6

Figure 10: Runtime in seconds of applications with 40
threads on machine m4x10. The label oom indicates the
application ran out of memory. In bold are the best times
for each input and graph problem pair. (†) indicates that
the best time on cc occurred with eight threads: twitter40
(13.8 s), twitter50 (13.6 s).

467

rm
at

24

rm
at

27

tw
itt

er
40

tw
itt

er
50

ro
ad

Galois 17 10 14 14 8440
Ligra 10 6 15 15 6262
PowerGraph 9 7 8 >100

Figure 11: Approximate diameters
computed.

rmat24 rmat27 twitter40 twitter50 road

8x16 64x16 8x16 64x16 8x16 64x16 8x16 64x16 8x16 64x16

bfs 29.2 21.8 73.0 28.6 73.2 38.5 81.5 50.8 161.5 821.6
cc 114.5 53.5 270.5 71.5 270.0 90.0 406.0 112.0
pr 11.6 9.9 43.2 14.8 30.5 17.6 42.3 16.4 4.1 5.8
sssp 112.0 76.9 173.9 63.0 175.2 111.0 321.9 127.5

Figure 12: Runtime in seconds of PowerGraph applications on a distributed system
with eight or 64 m2x8 machines.

An example of not being able to express an optimiza-
tion is the lack of priority scheduling for the Ligra and
PowerGraph applications for SSSP. GraphLab supports
priority scheduling, so although the GraphLab SSSP ap-
plication is worse on scale-free inputs, it performs much
better than Ligra and PowerGraph on the road input due
to its support for priority scheduling. Thus, in some
cases, it is preferable to have inefficient support for pri-
ority scheduling than no support at all.

Another example is the push-versus-pull optimization
implemented in Ligra. In principle, this optimization
can be implemented in any DSL that supports coordi-
nated scheduling of vertex programs, like GraphLab, but
GraphLab does not provide any support for user-visible
concurrent bag or worklist objects, so it is not possible to
efficiently switch between push and pull traversals.

An example of the inability to exploit an optimization
is the GraphLab diameter application. We implemented
the faster pseudo-peripheral algorithm in GraphLab, but
because of large overheads starting and stopping parallel
execution, which are required for the sequential compo-
sition of the parallel breadth-first searches, the overall
application has very poor performance.

Figure 1212 shows the performance of PowerGraph
when run on a distributed system, the Stampede clus-
ter at the Texas Advanced Computing Center (TACC).
Each machine that we used in the cluster is an instance
of machine m2x8 in Figure 66. Given the poor perfor-
mance of the connected components and SSSP Power-
Graph implementations on the road graph on shared-
memory machines, we elected not to run those applica-
tions on the distributed machine. Even with 64 machines
(64 ·16 = 1024 cores), the performance is worse than that
of the best implementation on a single machine with 8
cores and 4 times the RAM for all but one application-
input combination (data not shown here). The one slower
combination is PageRank on rmat27 where Galois takes
15.6 seconds and PowerGraph takes 14.8 seconds.

5.4 Comparison of implementations
Figure 1010 also shows the performance results of Ga-
lois versions of Ligra and PowerGraph—Ligra-g and
PowerGraph-g, respectively.

Overall, the Galois implementations of graph DSLs do
better than the original DSL implementations, although
this varies from DSL to DSL. If we consider pairs of
Ligra and Ligra-g runtimes for each graph problem, in-
put and number of threads, in 18/30≈ 60% of the pairs,
the Galois version is faster. Note that, due to incom-
patibilities, a different compiler was used for each ver-
sion of the application. Considering pairs of Power-
Graph and PowerGraph-g, runtimes, 18/24 = 0.75% of
the pairs favor the Galois version. As noted earlier, Pow-
erGraph supports distributed-memory execution as well,
so some portion of the performance gap is due to the ad-
ditional overhead of supporting distributed-memory ex-
ecution and not using it. For GraphLab and Galois, all
of the pairs favor Galois, although in this case, the Ga-
lois applications include optimizations that could not be
implemented in GraphLab, like push-versus-pull.

Some improvements can be made to the Galois ver-
sions of these DSLs. For instance, the Ligra version
of the diameter application tends to be faster than the
Ligra-g version, and the PowerGraph version of BFS
tends to scale better than the PowerGraph-g version, but
overall, the results suggest that the Galois infrastructure
is a reasonable substrate on which graph DSLs can be
built.

5.5 Evaluation of out-of-core DSLs
To evaluate the out-of-core DSLs, GraphChi and our
combination of Ligra and GraphChi that we call
LigraChi-g, we use a machine with less memory, m2x4
(see Figure 66). To test the out-of-core capability, we give
each system a memory budget of 2 GB of RAM to store
graph data. This includes graph adjacency information
and edge values, but it does not include user data al-
located for a node nor any additional user or runtime-
allocated structures. The entire road graph fits in this
memory budget.

468

rm
at

24

rm
at

27

tw
itt

er
40

tw
itt

er
50

ro
ad

bfs LigraChi-g 9 133 187 960 12
cc LigraChi-g 17 205 175 310 169
cc GraphChi 223 1164 870 1179 120
dia LigraChi-g 21 192 265 697 29
pr LigraChi-g 16 143 90 114 6
pr GraphChi 38 308 154 220 13
sssp LigraChi-g 36 1127 3227 4873 790
bc LigraChi-g 18 237 251 1561 14

Figure 13: Runtime in seconds of applications on machine
m2x4 with eight threads.

Figure 1313 gives the performance of the out-of-core
DSLs, GraphChi and LigraChi-g. Inputs were stored on
a 7200 RPM SATA drive. GraphChi allows separate con-
figuration of load threads, which read the graph file, and
execute threads, which run the vertex program. For these
experiments, the number of threads refers to the number
of execute threads. We always use two load threads.

These out-of-core experiments highlight the impact
of having enough memory for graph analytics applica-
tions. Ignoring differences in processors but keeping the
number of threads the same, on the larger inputs, i.e.,
rmat27, twitter40 and twitter50, running in a memory-
constrained environment with LigraChi-g (see Figure 1313)
is between 3.4X and 197X slower than performing the
same algorithm with Ligra-g on machine m4x10 (data
not shown here), an unconstrained memory environment.

These results provide more context for the recent
claim by Kyrola et al. that out-of-core execution of graph
analytics only incurs a modest performance penalty [1717].

The slowdown is between 3.4X and 7.8X for the con-
nected components, approximate diameter and PageR-
ank applications. With a 5X reduction in memory, these
results suggest a reasonable trade-off between space and
time for connected components and PageRank. For the
approximate diameter application, there are additional
gains from switching to the more expressive Galois pro-
gramming model.

For the other applications, the slowdown ranges be-
tween 11.5X and 197X, not including the additional
slowdown of Ligra or Ligra-g versus Galois. The out-
of-core DSLs impose a particular scheduling of activi-
ties that optimizes IO operations, but that order may not
be efficient from the application standpoint. For more
effective out-of-core implementations of these applica-
tions, more attention should be paid towards the joint
optimization of application and IO scheduling.

6 Conclusion
A number of DSLs for graph analytics have been pro-
posed recently. Given the importance of the problem do-
main and the limitations of existing DSLs, it is likely that
more DSLs will be designed and implemented in the near
future. In this paper, we argued that these DSLs require
a lightweight infrastructure that supports autonomous
scheduling of fine-grain tasks with application-specific
priorities. We presented the design and implementation
of the Galois system, which accomplishes this through a
machine-topology-aware scheduler, a priority scheduler
called obim, and a library of scalable data structures.

We demonstrated the capabilities of the Galois infras-
tructure in three ways. First, we implemented sophisti-
cated algorithms for some of the graph analytics prob-
lems, argued that they cannot be implemented in existing
DSLs, and showed that end-to-end performance is im-
proved by many orders of magnitude, thanks to the better
algorithms. Second, we showed that even when an algo-
rithm can be expressed in existing DSLs, its implemen-
tation in Galois can be orders of magnitude faster when
the input graphs are road networks and similar graphs
with high diameter, thanks to better scheduling. Third,
we implemented the APIs of three existing graph DSLs
on top of the common infrastructure in a few hundred
lines of code and showed that even for power-law graphs,
the performance of the resulting implementations often
exceeds that of the original DSL systems, thanks to the
lightweight infrastructure. Furthermore, we also showed
that combinations of features from some of these DSLs
can be implemented easily on top of the Galois system.

From our experience with graph analytics programs,
we offer the following lessons.

To those interested in graph analytics: Far greater per-
formance gains, often by orders of magnitude, can come
from choosing an expressive programming model than
can be obtained by tuning a restricted DSL. In this do-
main, a rich programming model with an inefficient im-
plementation can often outperform a more restricted pro-
gramming model with a more efficient implementation!

To implementers of DSLs on shared-memory systems:
Exploiting machine topology and scalable memory allo-
cation are key to scalable implementations.

To designers of programming models on distributed-
memory systems: Just as in shared-memory systems, the
large improvements possible from the selection of a rich
programming model should be an important considera-
tion for the design and implementation of graph analytics
on distributed memory.

469

References
[1] E. D. Berger, K. S. McKinley, R. D. Blumofe, and

P. R. Wilson. Hoard: a scalable memory alloca-
tor for multithreaded applications. SIGPLAN Not.,
35(11):117–128, Nov. 2000.

[2] D. P. Bertsekas, F. Guerriero, and R. Musmanno.
Parallel asynchronous label-correcting methods for
shortest paths. J. Optim. Theory Appl., 88(2):297–
320, Feb. 1996.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel
and distributed computation: numerical methods.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

[4] U. Brandes. A faster algorithm for betweenness
centrality. J. Mathematical Sociology, 25(2):163–
177, 2001.

[5] N. G. Bronson, J. Casper, H. Chafi, and K. Oluko-
tun. A practical concurrent binary search tree. In
Proc. ACM SIGPLAN Symp. Principles And Prac-
tice of Parallel Programming, PPoPP ’10, pages
257–268, 2010.

[6] M. Cha, H. Haddadi, F. Benevenuto, and K. P.
Gummadi. Measuring user influence in Twitter:
The million follower fallacy. In Proc. Intl AAAI
Conf. Weblogs and Social Media, ICWSM ’10,
2010.

[7] K. M. Chandy and J. Misra. The drinking philoso-
phers problem. ACM Trans. Program. Lang. Syst.,
6(4):632–646, Oct. 1984.

[8] B. Chazelle. The soft heap: an approximate priority
queue with optimal error rate. J. ACM, 47(6):1012–
1027, Nov. 2000.

[9] A. T. Clements, M. F. Kaashoek, and N. Zeldovich.
Scalable address spaces using RCU balanced trees.
In Proc. Intl Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, AS-
PLOS ’12, pages 199–210, 2012.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
editors. Introduction to Algorithms. MIT Press,
2001.

[11] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: distributed graph-
parallel computation on natural graphs. In Proc.
USENIX Conf. Operating Systems Design and Im-
plementation, OSDI ’12, pages 17–30, 2012.

[12] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-Marl: a DSL for easy and efficient graph
analysis. In Proc. Intl Conf. Architectural Support
for Programming Languages and Operating Sys-
tems, ASPLOS ’12, pages 349–362, 2012.

[13] G. C. Hunt, M. M. Michael, S. Parthasarathy, and
M. L. Scott. An efficient algorithm for concurrent
priority queue heaps. Inf. Process. Lett., 60:151–
157, November 1996.

[14] J. JaJa. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[15] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic
parallelism requires abstractions. In Proc. ACM
SIGPLAN Conf. on Programming Language De-
sign and Implementation, PLDI ’07, pages 211–
222, 2007.

[16] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In Proc.
Intl Conf. World Wide Web, WWW ’10, pages 591–
600, 2010.

[17] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
large-scale graph computation on just a PC. In
Proc. USENIX Conf. Operating Systems Design
and Implementation, OSDI ’12, pages 31–46, 2012.

[18] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A
new parallel framework for machine learning. In
Proc. Conf. Uncertainty in Artificial Intelligence,
UAI ’10, July 2010.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:
a system for large-scale graph processing. In Proc.
ACM SIGMOD Intl Conf. on Management of Data,
SIGMOD ’10, pages 135–146, 2010.

[20] J. M. Mellor-Crummey and M. L. Scott. Al-
gorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput.
Syst., 9(1):21–65, Feb. 1991.

[21] U. Meyer and P. Sanders. Delta-stepping: A par-
allel single source shortest path algorithm. In
Proc. European Symposium on Algorithms, ESA
’98, pages 393–404, 1998.

[22] M. M. Michael. Scalable lock-free dynamic mem-
ory allocation. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementa-
tion, PLDI ’04, pages 35–46, 2004.

470

[23] D. Nguyen and K. Pingali. Synthesizing concur-
rent schedulers for irregular algorithms. In Proc.
Intl Conf. Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11,
pages 333–344, 2011.

[24] M. Papaefthymiou and J. Rodrigue. Implementing
parallel shortest-paths algorithms. In DIMACS Se-
ries in Discrete Mathematics and Theoretical Com-
puter Science, pages 59–68, 1994.

[25] R. Pearce, M. Gokhale, and N. M. Amato. Mul-
tithreaded asynchronous graph traversal for in-
memory and semi-external memory. In Proc.
ACM/IEEE Intl Conf. High Performance Comput-
ing, Networking, Storage and Analysis, SC ’10,
pages 1–11, 2010.

[26] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos,
and X. Sui. The tao of parallelism in algo-
rithms. In Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, PLDI
’11, pages 12–25, 2011.

[27] A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proc. ACM SIG-
PLAN Conf. Programming Language Design and
Implementation, PLDI ’89, pages 69–80, 1989.

[28] S. Schneider, C. D. Antonopoulos, and D. S.
Nikolopoulos. Scalable locality-conscious multi-
threaded memory allocation. In Proc. Intl Symp.
Memory Management, ISMM ’06, pages 84–94,
2006.

[29] N. Shavit and I. Lotan. Skiplist-based concurrent
priority queues. In Proc. Intl Parallel and Dis-
tributed Processing Symp./Intl Parallel Processing
Symp., IPDPS ’00, pages 263–268, 2000.

[30] N. Shavit and A. Zemach. Scalable concurrent pri-
ority queue algorithms. In Proc. ACM Symp. Prin-
ciples of Distributed Computing, PODC ’99, pages
113–122, 1999.

[31] J. Shun and G. E. Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proc. ACM SIGPLAN Symp. Principles and Prac-
tice of Parallel Programming, PPoPP ’13, pages
135–146, 2013.

[32] H. Sundell and P. Tsigas. Fast and lock-free con-
current priority queues for multi-thread systems. J.
Parallel Distrib. Comput., 65:609–627, May 2005.

[33] L. G. Valiant. A bridging model for parallel com-
putation. Commun. ACM, 33(8):103–111, 1990.

[34] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix
rebirth: Scalable MapReduce on a large-scale
shared-memory system. In Proc. IEEE Intl Symp.
Workload Characterization, IISWC ’09, pages
198–207, 2009.

471

	Introduction
	Programming models and DSLs
	Model problem: SSSP
	Programming models
	Graph analytics DSLs

	Applications
	The Galois system
	Scheduler
	Topology-aware bags of tasks
	Priority scheduling

	Scalable library and runtime
	Other DSLs in Galois

	Evaluation
	Methodology
	Summary of results
	Complete results
	Comparison of implementations
	Evaluation of out-of-core DSLs

	Conclusion

