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Abstract
We report on the design and implementation of Naiad, a
set of declarative data-parallel language extensions and an
associated runtime supporting efficient and composable in-
cremental and iterative computation. This combination is
enabled by a new computational model we call differen-
tial dataflow, in which incremental computation can be per-
formed using a partial, rather than total, order on time.

Naiad extends standard batch data-parallel processing
models like MapReduce, Hadoop, and Dryad/DryadLINQ,
to support efficient incremental updates to the inputs in the
manner of a stream processing system, while at the same
time enabling arbitrarily nested fixed-point iteration. In this
paper, we evaluate a prototype of Naiad that uses shared
memory on a single multi-core computer. We apply Naiad
to various computations, including several graph algorithms,
and observe good scaling properties and efficient incremen-
tal recomputation.

1. Introduction
The combination of declarative programming and data-
parallel execution has made it easier to write parallel pro-
grams that process large data sets. An early example of this
approach used parallel relational databases and SQL [11],
but more recently the MapReduce model [10] has shown that
a very simple dataflow graph, with two data-parallel stages,
is both powerful and relatively simple to implement as a scal-
able distributed system. Later systems have extended this
scalability to directed acyclic dataflow graphs [17], which
can support a more expressive, composable set of declara-
tive operators [8, 25, 26]. In this paper, we describe Naiad,
which moves away from the batch-oriented, acyclic dataflow
systems of the last few years by introducing efficient and
composable incremental and iterative computation using a
similar declarative programming model.

Data-analysis platforms are increasingly used for real-
time decision making, for example to conduct advertising
auctions, provide real-time query suggestions on trending
topics, or allow users to visualize datasets interactively.
Many analysis tasks, particularly those involving graph data,
require iterative algorithms. However, data-parallel systems

have been developed to support either incremental update
or iteration, but not both. Materialized view-maintenance
engines [16], stream processing systems [2, 14] and de-
scendants of MapReduce [3, 15] provide efficient support
for incremental input, but do not support iterative pro-
cessing. Likewise, iterative data-parallel frameworks in-
clude Datalog [7], recursive SQL databases [12] and sev-
eral systems that add looping constructs to a MapReduce-
like model [6, 13, 20, 21, 28], but most of these provide a
constrained programming model (e.g. stratified negation in
Datalog), and none supports incremental input processing.

This paper has two main contributions. First, we intro-
duce a new data-parallel execution model, called differential
dataflow, that allows incremental and iterative constructs to
be composed efficiently, and enables programmers to write
nested loops that respond quickly to incremental changes in
their inputs. The key innovation is that differential dataflow
describes changes to collections using a partial order rather
than a more-conventional total order. Using a partial order
enables the collections to evolve in multiple independent di-
mensions (e.g. loop indices or input versions) without need-
ing to reset or restart one when another changes.

The second contribution is a report on our implemen-
tation of differential dataflow in Naiad, which comprises
language extensions and a data-parallel runtime system.
The implementation adopts the language integrated query
(LINQ) feature of the .NET framework [4], in which pro-
grammers create dataflow computations out of strongly
typed collections and higher-order data-parallel operators
such as Select, GroupBy and Join. To this set, we add an
operator that iterates a subcomputation to a fixed point and
can be nested arbitrarily. Moreover, all differential dataflow
graphs that Naiad produces can respond efficiently to incre-
mental changes to any of their inputs.

Naiad unifies the mechanisms for incremental computa-
tion with those for iteration and as a consequence, within
a fixed-point computation, the amount of work performed
is approximately proportional to the number of records that
changed in the previous iteration. In many iterative compu-
tations, the number of records varying between iterations is
often very much smaller than the total number of records,



particularly as the iteration nears a fixed point. Naiad’s exe-
cution of such a computation accelerates as the iterates con-
verge.

We have developed several applications on top of Na-
iad. Many graph algorithms are ideally suited to the dif-
ferential dataflow model, and we have implemented algo-
rithms that compute shortest paths, strongly connected com-
ponents, PageRank, efficient graph partitioning schemes and
minimum spanning forests. To demonstrate the generality
of the programming model, we have also implemented sev-
eral other applications, including Smith-Waterman sequence
alignment, data cubing, kernel k-means, numerical integra-
tion, parallel-prefix and a key-value store. All of these pro-
grams support incremental updates to any of their inputs.

This paper describes a multi-processor shared-memory
implementation of Naiad, which suffices to present the ben-
efits and complexities of the differential dataflow model.
Many of our motivating applications require the resources of
a cluster, and this paper lays the groundwork for a more scal-
able cluster-based implementation. The required systems en-
gineering is non-trivial, and is the subject of ongoing work.

The rest of the paper is structured as follows. Section 2
gives an overview of Naiad concepts as seen by the program-
mer; and Section 3 introduces differential data flow and the
use of partial orders to represent the computation’s logical
time. Section 4 provides a formal basis for the differential
dataflow model. Section 5 describes the multi-core imple-
mentation and discusses several optimizations that improve
its performance. Section 6 evaluates this implementation on
a variety of example workloads. Section 7 discusses related
work, and is followed by concluding remarks.

2. Programming with Naiad
The key feature that differentiates Naiad from previous data-
parallel frameworks is that it supports incremental and itera-
tive computation in a composable and efficient manner. This
section illustrates the language mechanisms that a program-
mer uses to express these computations using a running ex-
ample of graph connectivity.

2.1 Declarative programming model
DryadLINQ and FlumeJava allow the programmer to build
data-parallel dataflow graphs using declarative operators
such as Select, Join, and Distinct defined over collec-
tions of strongly-typed records. Naiad adopts this program-
ming model as well: a .NET program is linked against the
Naiad library which defines a generic Collection<T> type
supporting most standard LINQ operators, some new opera-
tors, and the necessary mechanisms for their execution.

Figure 1 shows an example Naiad computation. The
LocalMin function describes a query in which a collec-
tion of labeled nodes (nodes) are joined (Join) with the
graph structure (edges) to provide each neighbor of a node
with that node’s label. After including the original labels

// improves an input labeling of nodes by considering the
// labels available on neighbors of each node as well
Collection<Node> LocalMin(Collection<Node> nodes,

Collection<Edge> edges)
{

return nodes.Join(edges,
node => node.id,
edge => edge.srcId,
(node, edge) => new Node(edge.dstId,

node.label))
.Concat(nodes)
.Min(node => node.id, node => node.label);

}

Figure 1. A simple Naiad function over collections.

(Concat) each node determines the minimal label among
its neighbors and itself (Min) and the resulting collection of
re-labeled nodes is returned. The execution of the LocalMin
function calls in to Naiad’s supplied Join, Concat, and Min

library methods, which construct a corresponding dataflow
graph using standard techniques.

Figure 1 and other code fragments elide some details for
clarity. The operator syntax is detailed in the Appendix.

2.2 Incremental updates
All Naiad programs are inherently incremental; any Naiad
computation responds to changes to its input collections and
produces the corresponding changes in its output collections.
This is true for individual operators (Select, Join, Min)
and for all dataflow resulting from their composition. While
some streaming systems support only monotonic computa-
tions, Naiad allows the changes to collections to be arbitrary
additions or subtractions of records. The cost is that Naiad
must maintain sufficient state to respond to any change to
the input, and this state can often be proportional to the size
of the collection itself.

The example program in Figure 2 illustrates how the
programmer uses incremental computation in Naiad. The
InputCollection object edges encapsulates an input
to the computation and defines the non-blocking OnNext

method. Each call to OnNext on an input collection sup-
plies a new batch of data, corresponding to a new “epoch”
of computation. If there are multiple inputs the user must
supply a new collection to each input for every epoch by
calling OnNext on each of them, though some collections
may be empty. The Sync method blocks until there is no
more work on all preceding epochs and the system has qui-
esced. The Subscribe method allows the programmer to
register an event handler, in this case PrintOutput, on an
output collection. The event handler is called once per epoch
and supplies the changes to the output that result from the
input collections that were introduced in the corresponding
epoch.

2.3 Declarative iteration
Imagine taking the output of the incremental dataflow graph
resulting from LocalMin and connecting it back to the input
corresponding to the nodes argument. This creates a cycle



// create an input for edges, and initialize labels
Collection<Edge> edges = new InputCollection<Edge>(...);
Collection<Node> nodes = edges.Select(x => new Node(x.srcId,

x.srcId))
.Distinct();

// Set up the dataflow graph, register interest in the output
LocalMin(nodes,edges).Subscribe(x => PrintOutput(x));

// introduce initial edge data
Edge[] initialGraph = {...};
edges.OnNext(initialGraph);
edges.Sync();

// PrintOutput() will be called with the labeled nodes
// of the initial graph before edges.Sync() returns

// add changes to the graph
Edge[] graphUpdates = {...};
edges.OnNext(graphUpdates);
edges.Sync();

// PrintOutput() will be called with node labels that
// have changed before edges.Sync() returns

edges.OnCompleted(); // close computation

Figure 2. Processing incremental inputs in Naiad.

in which changes to the output propagate back to the input
and induce further computation, continuing until no more
changes occur—i.e. it has reached a fixed point. We have ef-
fectively co-opted Naiad’s incremental execution to perform
a fixed-point computation.

The programmer expresses fixed-point iteration with a
new FixedPoint operator on typed collections that takes as
an argument a function from and to collections of the same
record type. Conceptually, FixedPoint iteratively invokes
the supplied function, starting from the source collection and
using the output of the function at iteration i as the input to
the function at iteration i+1, until convergence. In fact, only
the differences between iterations are processed, accelerating
the iteration as the computation approaches fixed point.

Figure 3 demonstrates the use of FixedPoint, apply-
ing the LocalMin function inside a fixed point to compute
the connected components in a symmetric graph. When this
function converges, every node in the same connected com-
ponent will hold the same label. Figure 4 shows a simpli-
fied version of the ConnectedComponents dataflow graph.
Shaded vertices are added by the Naiad runtime system, as
explained in Section 5.1.1.

Figure 5 illustrates how the connected components algo-
rithm runs on a six-node graph: the fixed point is reached af-
ter four iterations, represented by the times t ∈ {(0, 0), (0, 1),
(0, 2), (0, 3)}. Each “time” value has two dimensions: the
zero-valued first coordinate indicates that the computation is
operating on the first epoch of input to an incrementalized
computation and the second coordinate indicates the itera-
tion count within the fixed point computation. Section 3 ex-
plains this notion of multi-dimensional time in much more
detail. Each circle represents a “version” of the label as-
signed to a graph node at a particular iteration, and the
stacking of the labels illustrates the fact that Naiad keeps

// produces an (id, label) pair for each node in the graph
Collection<Node> ConnectedComponents(Collection<Edge> edges)
{

// start each node with its own label, then iterate
return edges.Select(x => new Node(x.srcId,x.srcId))

.Distinct()

.FixedPoint(x => LocalMin(x, edges));
}

Figure 3. Connected components in Naiad.
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Figure 4. Simplified dataflow graph for connected compo-
nents.
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Figure 5. An execution of connected components on a six-
node graph.

the full version history. At time t = (0, 0) each node is
labeled with its own id, and in subsequent iterations it is
labeled with the id shown at the top of the “stack” of cir-
cles. Should any edge be deleted from the graph, the system
can respond efficiently without restarting the computation
as we shall see below. The work done by the system and the
program’s memory footprint are both approximately propor-
tional to the total number of versions produced during the
execution.

Figure 6 shows quantitatively how fixed-point iteration
with differences progressively reduces the amount of pro-
cessing required. The measurements were taken by run-
ning ConnectedComponents over the Amazon product
co-purchasing network of June 2003[19], which contains
around 400,000 nodes and 3.4 million edges. With this
dataset the label of every node is updated after the first it-
eration, hence we see the number of records double for the
second round (the old label is subtracted and the new one
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Figure 6. Performance of the fixed point computation in
ConnectedComponents.

added). The processing time is around 18s for the first itera-
tion, dropping to 5ms on the final iteration, which processes
just 18 difference records. In fact the Amazon graph con-
tains one large connected component with 403, 364 nodes,
and 6 small components ranging in size from 2 to 15 nodes.

2.4 Incremental and Iterative Computation
The result of the reachability computation in Figure 3 is
a collection that reports incremental changes to its output
reflecting changes to the input of the computation. Figure 7
shows the work done if, after initially running the connected
components program on the input in Figure 5, a second
epoch is executed in which the edge between nodes 1 and 3
is removed from the input. In this subsequent epoch the first
coordinate of t is 1 rather than 0. Iteration t = (1, 0) shows
the same label assignment as t = (0, 0) and because of
Naiad’s design, explained in detail in the following sections,
this unchanged labeling means that the system has almost
no work to do for iteration t = (1, 0). In iteration t = (1, 1)
the label for node 3 is 3, whereas it was 1 in iteration t =
(0, 1). This change from the previous epoch is represented
by the removal of label 1 from node 3’s history, shown as
an unshaded circle. The amount of work done by Naiad
is approximately proportional to the number of unshaded
circles shown: the changes resulting from the removed edge
are propagated forward but most of the work already done in
the previous epoch is unaffected.

The approach taken in Naiad is unlike several other
declarative programming models including Datalog and re-
cursive SQL, which, while they use incremental evaluation
strategies, do not support incremental updates to the inputs
of iterative queries. Updating the set of base facts in a Dat-
alog computation cannot be achieved by removing some
facts and continuing iteration; undoing the consequences of
a fact requires either dependency tracking, or even restarting
the computation. It is the use of differential dataflow and a
partial order over the logical times, explained over the fol-
lowing sections, that allows Naiad to provide efficient, fully
composable incremental and iterative computation.
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Figure 7. A second epoch of input, corresponding to the
removal of an edge, is presented to Naiad after the initial
run shown in Figure 5 has completed. Each unshaded circle
represents a change in the label history of a graph node.

Concretely, the connected components computation can
retire epochs corresponding to single edge updates of the
Amazon product graph in an average of 0.49 milliseconds.
The user does not have to rewrite the program at all from
the original Naiad iterative computation in order to obtain a
version that also computes efficient incremental updates.

2.5 Nested and composable iteration
The same mechanisms that allow Naiad to distinguish and
react to both changes in the inputs and changes due to itera-
tion also let the system distinguish between changes due to
different levels of nested iteration.

Figure 8 presents a concise strongly-connected com-
ponents (SCC) algorithm based on a FixedPoint that
uses ConnectedComponents as a subroutine (i.e. a nested
FixedPoint). Strictly speaking, ConnectedComponents

only computes directed reachability, but can determine that
two vertices are in separate strongly-connected components
(different labels would imply different SCCs). By repeatedly
performing reachability queries on the directed graph and re-
moving edges between different SCCs, in both the forward
and reverse directions, we (provably) eventually converge to
exactly those edges between vertices in the same SCC.

Although the nesting of FixedPoint loops is straight-
forward for the programmer, the resulting dataflow graph is
quite complicated. Figure 9 shows a simplified version with
some vertices combined for clarity: in our current implemen-
tation the actual dataflow graph for this program contains 58
vertices. Nonetheless, the SCC program accepts incremen-
tal updates, and the doubly-nested fixed-point computation
responds efficiently to changes in its inputs.

2.6 Prioritization
It is not always the case that one wants to restart an iter-
ative computation from the first iteration on updated data;
for many algorithms it is more efficient (and still correct) to
restart the iteration from the conclusion of the previous it-



// returns edges between nodes within a SCC
Collection<Edge> SCC(Collection<Edge> edges)
{

return edges.FixedPoint(y => TrimTwice(y));
}

// trims edges by forward reachability, transposes
// trims edges by reverse reachability, transposes
Collection<Edge> TrimTwice(Collection<Edge> edges)
{

return edges.TrimByReachability()
.Select(x => new Edge(x.dst, x.src))
.TrimByReachability()
.Select(x => new Edge(x.dst, x.src));

}

// returns edges whose endpoints can reach the same node
Collection<Edge> TrimByReachability(Collection<Edge> edges)
{

var labels = ConnectedComponents(edges);

// struct LabeledEdge(a,b,c): edge a; int labels b, c;
return edges.Join(labels, x => x.edge.src, y => y.src,

(x, y) => new LabeledEdge(x, y, 0))
.Join(labels, x => x.edge.dst, y => y.src,

(x, y) => new LabeledEdge(x.edge, x.label1, y))
.Where(x => x.label1 == x.label2)
.Select(x => x.edge);

}

Figure 8. Strongly connected components in Naiad.
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Figure 9. Simplified dataflow for strongly connected com-
ponents. The outer loop contains two nested instances of the
ConnectedComponents dataflow graph from Figure 4.

// replaces nodes.FixedPoint(...) in ConnectedComponents
nodes.Prioritize(n => Math.Log(1 + n.label),

n => n.FixedPoint(x => LocalMin(x, edges)));

Figure 10. Extension of ConnectedComponents to priori-
tized computation.

eration. In the specific case of ConnectedComponents we
might introduce the elements of the nodes input progres-
sively, first flooding the graph with the small labels the ver-
tices will prefer, and only then introduce larger labels which
will only propagate through those vertices unreached by the
small labels.

Naiad provides the ability to sequence fixed-point com-
putation through the Prioritize operator. This operator re-
quires the programmer to specify an appropriate function for
mapping an input record to an integer representing relative
priority, as well as a body to which the prioritization should
apply. Elements with smaller priority values are introduced
to the fixed point loop before larger-priority data. Figure 10
presents the fragment replacing the FixedPoint invocation
in the ConnectedComponents method of Figure 3. In this
case, a sensible priorityFunction assigns earlier priority
to nodes with a lower identifier.

Prioritization inherently reduces the amount of avail-
able parallelism, and, if the priority assignment is too fine-
grained, can adversely affect performance. Here, we use
log(l+1) as the priority for label l, which is a good trade-off
for this program. As prioritization is also fully composable
with other Naiad operators, SCC can exploit the improved
ConnectedComponents without additional modification.

Figure 11 expands on the evaluation of a prioritized com-
putation. An additional time coordinate is added to represent
the priority, For example node label 2 is introduced at time
(0, 2, 0). The total number of label versions generated us-
ing this schedule is much lower than the number generated
by the non-prioritized version in Figure 5, even though there
are more iterations before convergence.

Figure 12 shows the savings in both records processed
and time per iteration when prioritization is used to order the
records processed in ConnectedComponents. The graph
compares the number of differences processed and the time
per iteration relative to the same baseline values for the first
iteration without prioritization that were used in Figure 6.
Since the fixed point is now run multiple times with different
priority values, the horizontal axis now measures “rounds”
of computation rather than simply the fixed-point iteration
number as before. Each round corresponds to a distinct pair
of priority and iteration number. Most of the work occurs
early on, as labels with low values are flooded. Due to the
choice of a priority function that is logarithmic in label
value, many more labels are added in later epochs than in
earlier ones, and this generates the small peaks in running
time towards the right of the graph.
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Figure 11. Prioritized version of connected components. For simplicity, here we use the node label as the priority. The work
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Figure 12. Effects of prioritization on the performance of
the fixed point computation in ConnectedComponents.

2.7 Multiset semantics
Naiad represents collections using unordered multisets, in
which each record has an integral frequency but no in-
formation is exposed about, for example, relative order.
This makes it much easier to reason about incremental
computation since addition and subtraction are commuta-
tive, but abandons features like set semantics and ordering.
Set semantics can be recovered by applying operators like
Distinct to multisets, and many of the idioms associated
with ordered sequences can be recovered using Naiad’s op-
erators. For example, the common use of sorting for “top-k”
queries can be supported by operators like Min and Max,
combined with iteration. The addition of sequences to Na-
iad’s type system would introduce some additional imple-
mentation complexity but we do not believe it would conflict
with any of the other design features.

3. Differential dataflow
The combination of incremental and iterative computation
in Naiad is not only straightforward for the programmer, but
also results in significant performance optimizations. In this
section we describe how differential dataflow enables these
optimizations, though we defer the more formal presentation
until Section 4.

3.1 Collections and differences
A Naiad programmer manipulates objects representing mul-
tiset “collections” of records. In a traditional dataflow exe-

cution model, the edges in the dataflow graph transmit col-
lections between operators. An operator receives collections
on its input edges, transforms them, and outputs new col-
lections on its output edges. If the collections are unlikely
to change much between re-executions, it is natural to only
transmit the difference between the new and old collection.
Not only can this reduce the amount of data transferred, but
in a data-parallel setting the differences identify and restrict
which subcomputations may need to be re-executed. For ex-
ample, if a single record changes in the input to a group-
wise aggregation we only need to update the aggregate of
the group associated with the record.

Naiad transmits collections exclusively as multiset differ-
ences, in which a positive weight w corresponds to adding
w copies of the record to the collection, and a negative
weight indicates the removal of the corresponding number
of copies. Figure 13 illustrates the difference between stan-
dard dataflow and differential dataflow using the Distinct

operator, where the large arrows indicate dataflow edges in
and out of the operator. The greyed sets (e.g. {A,A,B,C})
show the collections that would be transmitted along the
edges in a standard dataflow implementation, while the “In-
put differences” and “Output differences” columns show the
differences that Naiad transmits. The input collection varies
as time goes from t = 0 . . . 3. A set of records is added at
time t = 1 and the operator emits the corresponding posi-
tive differences. At the next time an “A” is removed from the
collection, which updates the internal operator state but has
no effect on the output. At the third invocation the remain-
ing “A” record is removed from the input and the operator
emits a negative difference, effectively deleting the record
from the output. In order to be able to respond to arbitrary
differences, the Distinct operator maintains state summa-
rizing the differences it has seen. The details of this state are
explained in Section 5.

3.2 Partially-ordered logical time
Like other systems, Naiad defines its differences so that
collections at a given time t are the accumulation of all
preceding differences. Unlike previous systems, Naiad uses
a partial order over times t, which gives it the flexibility
to derive a new collection from more than one previous
collection.
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Figure 13. Differential dataflow with Distinct, see Sec-
tion 3.1.

For example, as a fixed-point computation proceeds it is
natural to describe each iterate using the difference from
the previous iterate. However, if the input collection is then
changed, we have at least two possible starting points for the
updated iterates. As before, we can compute the difference
between successive iterates starting from the changed input
collection, doing approximately as much work as the preced-
ing fixed-point computation. However, the updated sequence
of iterates might evolve in a similar way to the original se-
quence of iterates, and we could also justify deriving the
updated ith iterate from the original ith iterate. A third ap-
proach, taken by Naiad, combines the two: differences con-
tributing to both precursors are accumulated (being careful
not to double-count) and taken as the basis for differenc-
ing. Conceptually, the differences can be laid out in a grid,
rather than a sequence of independent lines (as in the first
two cases). By preserving this multi-dimensional grid struc-
ture of differences, changes to collections resulting from ei-
ther type of change to the inputs can be efficiently exploited,
resulting in a composite reduction in the size of differences
and redundant recomputation for many iterative data-parallel
computations.

Furthermore, this grid is not restricted to two dimensions.
Naiad uses multi-dimensional lattice times to support the
composition of incremental computation with nested itera-
tion. For ease of exposition, a lattice time in Naiad can be
thought of as a tuple of integers. In an incremental compu-
tation, the input varies in one dimension, which corresponds
to the input epoch number. Upon entering a nested fixed-
point computation, all times are extended by one element
(corresponding to an iteration counter), and this element is
stripped on egress from the fixed point. In general, the lattice
time is hidden from the programmer: the OnNext() method
on the input collection increments the epoch number of the
next batch of records, and the structured nesting of fixed-
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Figure 14. Two-dimensional lattice times in a computation
containing repeated invocations of a fixed point loop. Every
iteration of the loop increments the “inner” time. Every
new batch of inputs advances the “outer” time. The times
are taken from a product lattice indicated using the black
arrowheads, where t1 < t2 if there is a path along the
arrowheads from t1 to t2.

point operators ensures that the correct dimension of lattice
times is used throughout a Naiad program.

3.3 A hypothetical example
In Figure 14, each box represents the state of a collection
in a particular loop iteration and is labeled with its two-
dimensional time. The horizontal axis corresponds to iter-
ations of a fixed point loop, while the vertical axis corre-
sponds to batches of input data introduced into the compu-
tation. As the program executes, it first runs the fixed point
to convergence, shown on the first row. Once the first loop
has converged, changes are made to the input and a new
fixed point must be computed that reflects these updates.
This computation is shown on the second row. Every time
a new batch of inputs is supplied, a new row is started, and
the updated fixed point computed.

The lattice in Figure 14 is indicated by the black arrow-
heads: time t1 ≤ t2 if there is a path from t1 to t2 follow-
ing the arrowheads. The boxes with dotted outlines repre-
sent times after the fixed point has converged for a given
batch. The boxes with solid outlines are those times at which
a traditional dataflow system would have to do work: after
convergence there is nothing to be done. The shading of the
boxes indicates the amount of work that Naiad has to do for
the corresponding time in this example, where a white back-
ground indicates no work at all, and lighter shading suggests
less work. Understanding exactly what work is necessary un-
der differential dataflow can seem quite counterintuitive; the
box labeled (4, 17) is shaded even though the fixed point
converged at (4, 16). Keeping enough information to recon-
struct the full lattice of differences can occasionally lead to
work one might not expect to perform, however in general
this overhead is much lower than the work saved compared
to an incremental implementation with totally-ordered time.

The interplay between differential dataflow and lattice
time is illustrated in Figure 15, where again the lattice is
two-dimensional with the horizontal dimension indicating
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Figure 15. Differences and the corresponding induced col-
lections for a dataflow edge with two-dimensional lat-
tice time. The value of the induced collection at time t
(white background) is computed by summing the differences
(shaded background) at every time t′ ≤ t where the lattice
ordering is indicated using the black arrowheads.

iterations of a fixed point loop and the vertical dimension
indicating batches of input. Now each shaded box shows the
differences transmitted by differential dataflow along a par-
ticular dataflow edge in the program, and the unshaded boxes
show the corresponding collection that a traditional dataflow
system would transmit. The most important concept to un-
derstand in differential dataflow is that the collection at t is
determined by summing the differences at all times t′ ≤ t
in the lattice, i.e. all shaded boxes above and to the left of
the collection in the figure. The consequence can initially
seem surprising, for example indicating that during the sec-
ond fixed point loop shown, the transition from A to A be-
tween the third and fourth iterations (after fixed point has
been reached!) requires a difference of +B (intuitively, cor-
recting for the behavior in the previous iteration, where a
B should be subtracted). Nevertheless the reader can check
correctness by manually summing the differences above and
to the left of the corresponding box.

The fundamental intuition behind the performance gains
of Naiad over traditional dataflow can be understood by
considering the second time on the second row, where the
shaded box is empty despite the fact that the collection has
changed from the previous iteration in this batch (and in-
deed the second iteration at the previous batch). One way of
understanding this is that, during the first batch, the system
“discovered” that the difference between the first and sec-
ond loop iterations is that a C is added; and thus adding a C
the second time around requires no extra computation. Be-
cause the operator consuming this dataflow edge has been
incrementalized, an empty box actually corresponds to the
operator doing no work; the destination operator is already
expecting the C to arrive. Of course, although the opera-
tor does no work at this timestep the system does have to
do work to determine that the difference set is empty, but a
careful implementation can minimize the overhead of these
computations over differences.

Example Description
A Collection (a function from records to counts)
A(x) Frequency of record x in collection A
Ak Records in collection A mapping to key k
f(A) Data-parallel operator f on collection A
A Collection trace

(a function from lattice elements to collections)
A[t] Collection A at time t ∈ L
δA Difference trace, describes changes in A.

(a function from lattice elements to differences)
δA[t] Differences in A at time t
δa Difference trace updating difference trace δA

Table 1. Legend of notation.

3.4 Using different lattices
An attractive property of generalizing time using a lattice is
that Naiad can choose different lattices, for example, to im-
prove the performance of an iterative computation. In prac-
tice, we have found the two most useful lattice construc-
tions to be the product construction depicted in Figure 14,
where (a, b) ≤ (c, d) iff both a ≤ c and b ≤ d, and the
lexicographic construction, where (a, b) ≤ (c, d) iff either
a < c or both a = c and b ≤ d. The product construc-
tion can result in substantial performance improvements in
algorithms such as SCC in which the nested invocations of
ConnectedComponents are made over successive versions
of a graph that may differ by as little as a single edge.
The lexicographic construction is beneficial for prioritiza-
tion (as described the previous section), where successive
fixed-point computations should reflect the final states of
previous fixed-point computations, incorporating all differ-
ences rather than just those preceding the corresponding it-
erations. In each case, the ability to choose an appropriate
lattice leads to sparse differences and relatively few recom-
putations.

4. Formalism
We now give a formal presentation of the differential dataflow
model, which reassures us that Naiad has a sound theoretical
basis on which we can reason about its behavior. A legend
for the notation used in this section is included in Table 1.

A user defines computations over strongly typed collec-
tions of records. We model a collection using a function
mapping records of some type R to integer counts, writing
A : R → Z and writing A(x) for the frequency of record
x ∈ R in collection A. Collections can be added or sub-
tracted by adding or subtracting their corresponding counts:
(A+B)(x) = A(x)+B(x) and (A−B)(x) = A(x)−B(x).

A function from one or more collections to a collection
is referred to as an operator. Operators on collections re-
sult in new collections which may be used in further com-
putation, forming a dataflow graph. Although cycles may be
introduced into a differential dataflow graph, to implement



fixed-point iteration, individual operators do not introduce
cycles.

Many operators express data-parallelism through key
functions for each of their inputs. A key function maps an
input record to a key type K that is common across all of
the operator’s inputs. The key space defines a notion of in-
dependence for an operator f , which can be written as

f(A,B) =
∑
k∈K

f(Ak, Bk) . (1)

where a set Ak (or Bk) is defined in terms of its associated
key function key as

Ak(r) = A(r) if key(r) = k, 0 otherwise, (2)

For example, a Join is parameterized by key functions for
its two inputs, and only produces pairs of records whose
keys match. A Naiad programmer specifies key functions on
a per-operator basis, so for example each instance of Join
may adopt a different key function. Rather than explicitly
name the key functions of an operator f , we will just use
Ak and Bk to reflect their role. In practice the independence
in (1) allows the computation of f(A,B) to be partitioned
arbitrarily across threads, processes, and computers as long
as elements mapping to the same key are kept together.

4.1 Lattice-Varying Collections
Central to differential dataflow is the ability of a collection
to vary as a function of some lattice, T , intuitively describing
progress through the computation. A collection trace is a
function from lattice elements to collections, written using
bold letters: A : T → (R→ Z). For a lattice element t ∈ T ,
A[t] indicates the collection associated with that element.

The functional dependence of operators between input
and output collections extends to collection traces: for an
operator f over collections, we lift f to operate over collec-
tion traces by requiring the output collection trace to reflect
at each t the operator applied to the input collections at t:

f(A,B)[t] = f(A[t],B[t]) . (3)

This lifting extends from individual operators to arbitrary
dataflow over operators, and we will speak freely of dataflow
defined over collections as applying to collection traces.

We now introduce an isomorphic representation for a
collection trace, named a difference trace, a function from
lattice elements to differences. A difference has the same
type as a collection, R → Z, but instead reflects changes
in the counts of the collection. For a collection trace A we
write its corresponding difference trace as δA, chosen so that

A[t] =
∑
s≤t

δA[s] . (4)

This implicit definition of δA can be rearranged to define co-
ordinates of δA explicitly in terms of A and prior differences

δA[t] = A[t]−
∑
s<t

δA[s] . (5)
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Figure 16. A step in the Naiad differential dataflow model.
Update difference traces (δa and δb) are subtracted from
the unprocessed traces (δUA and δUB) and added to the
processed traces (δA and δB), while at the same time the
output trace δz = δf(A + a,B + b)− δf(A,B) is produced.

When viewed as an function δ is linear: δ(A+B) = δA+δB.
The definition of a difference trace δA, and ultimately its
efficacy, depends critically on the ≤ relation of the lattice T ,
which does not need to be a total order.

We will often use trace for a collection trace or difference
trace, writing the two X and δX, with the understanding that
we can go from one to the other and back again mathemati-
cally, but that it is the difference trace that is typically stored
and acted upon by a practical implementation. Not only are
difference traces often much more compact than collection
traces, but they explicitly indicate when and how a collec-
tion has changed and allow us to restrict our recomputation
appropriately. On the other hand, our computations are typi-
cally specified in terms of operators over collections, and in
general we may need to be able to reproduce the collections
as well.

4.2 Execution Model
The Naiad differential dataflow model is a directed and pos-
sibly cyclic dataflow graph where edges correspond to traces
and vertices correspond to sources, sinks, or data-parallel op-
erators. A source has no incoming edges, and a sink has no
outgoing edges, and they encode the computation’s inputs
and outputs respectively. The intended final state of such a
computation is an assignment of traces to the edges so that
for each operator vertex, the trace on its output edge reflects
the operator applied to the traces on its input edges, as in
Equation (3).

The execution model is based on an assignment of two
traces to each edge: the first has been processed by the
recipient and is reflected in its output, and the second is
unprocessed and calls for attention. Initially, all traces are
empty. The system advances from one configuration to the
next in one of two ways: either a source adds a trace to the
unprocessed trace on its output edge; or an operator subtracts
a trace from its unprocessed input trace (possibly, but not
necessarily, leaving that region empty), adds the trace to its
processed input trace, and adds a trace to the unprocessed



trace of each output edge as defined by the logic of the
operator. After each step it is the case that each output
edge of an operator implementing a function f has its two
output traces sum to f applied to the processed trace on its
input edges. The computation quiesces when all unprocessed
traces are empty, and so each operator’s output traces equal
f applied to its input traces. No more computation will ensue
unless a source emits a new trace.

In Figure 16 we present the general case, where an op-
erator f has previously processed traces δA, δB resulting in
δZ, and now incorporates arbitrary traces δa, δb as additions
to δA, δB, resulting in output δz as the necessary corespond-
ing addition to δZ. Although δa, δb, δz are lower-case, they
are still fully general traces and may reflect arbitrary sets of
times t. Despite our use of difference traces (the δ notation),
we may need to transform the traces to collection traces in
order to evaluate operators f defined only over collections.
This is mathematically simple using equations (4) and (5),
and we explore the computational aspect in more detail in
the coming subsection.

4.3 Updating Difference Traces
We now derive some details of the operator update rules, to
serve as a basis for our implementation. Following the prim-
itive step in our execution model, our goal is to determine,
for a general data-parallel operator f , the necessary change
δz to apply to its output traces to reflect the introduction of
δa and δb to its input traces. We first determine the neces-
sary correction to the output using collection traces, and then
convert to difference traces to flesh out the implementation.

Let A and B be processed input collection traces, and let
a and b be collection traces we intended to add to them. The
necessary change to the output collection trace z is given by

z = f(A + a,B + b)− f(A,B) . (6)

Reconstructing all these collections from difference traces
seems daunting. However, in the general case where f is an
arbitrary data-parallel operator we do need to determine the
value of f on its new inputs. Fortunately, this reconstruc-
tion only needs to happen for those keys present in δa or δb.
Moreover, for several specific operators we can provide opti-
mized implementations, discussed in Section 5.2.1. Follow-
ing the data-parallel definition of f we only need to consider
differences produced from keys k for which at least one of
ak or bk are non-empty:

z =
∑
k

(f(Ak + ak,Bk + bk)− f(Ak,Bk)) . (7)

Let zk be the term in this sum corresponding to key k. From
ak and bk we can determine which zk may potentially be
non-zero and restrict our attention to determining them.

Of course, our goal is to determine δz, whose representa-
tion may be much more compact than that of z. For specific

t, individual elements δzk[t] can be derived using the equal-
ity zk[t] =

∑
s≤t δzk[s], as

δzk[t] = zk[t]−
∑
s<t

δzk[s] (8)

= f(Ak + ak,Bk + bk)[t]− f(Ak,Bk)[t]−
∑
s<t

δzk[s] .

(9)

One can explicitly assemble Ak[t] + ak[t], Bk[t] + bk[t],
Ak[t], and Bk[t], then apply f appropriately, followed by the
subtraction of the δzk[s].

We would like to avoid explicitly determining zk[t] for
all values of t, and instead leap directly to the non-zero
entries of δzk. We can conservatively approximate the set
{t : δzk[t] 6= 0} using the sets

T1 = {t : δak[t] 6= 0 or δbk[t] 6= 0}

T2 = {t : δAk[t] 6= 0 or δBk[t] 6= 0}
For δzk[t] to be non-zero, t must be the least upper bound
of a subset of T1 ∪ T2 containing at least one element of
T1. If t is not such a least upper bound, then the differences
at times less than it are reflected at their least upper bound,
from which there is no further difference to report at t. If
t is not preceded by at least one non-zero difference from
δak or δbk, the input remains unchanged at t and no output
change is required. A formal proof can be made by induction
over the partial order. Note that, since this approximation is
conservative, it does not affect the correctness of the compu-
tation. When the approximation is not exact it simply means
that some unnecessary computation ensues, as work is done
for values of t that correspond to empty entries of δzk[t].

5. Implementation
We have implemented a prototype version of Naiad that uses
multi-core parallelism in a single shared-memory computer.
In this section, we discuss four aspects of the implemen-
tation that are independent of the mechanism used to pro-
vide parallel execution: the translation of a Naiad query into
a cyclic dataflow graph (Subsection 5.1), the efficient ex-
ecution of fixed-point queries (Subsection 5.1.1), the data-
dependent prioritization of execution (Subsection 5.1.2) and
the incrementalization of standard data-parallel operators.
The full set of Naiad operators is presented in Appendix A.

5.1 From query to differential dataflow graph
A Naiad query is written in terms of updatable input sources
and data-parallel operators that transform these sources into
new collection traces. As in LINQ, the sources and operators
are strongly typed, and many of the operators are higher-
order functions that allow the user to call arbitrary user-
defined code on the elements of the trace. Many of the
operators Naiad supports are standard LINQ operators—
such as Select, Where, GroupBy, and Join—which are
analogous to their similarly named counterparts in SQL.
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Figure 17. The four primitive dataflow graphs for the Naiad
operators. A dashed box represents a subquery.

For Naiad to be able to execute a query, we must trans-
form it into a differential dataflow graph. Previous work has
shown how to transform declarative languages like LINQ
and Pig Latin into a directed acyclic dataflow graph, whose
vertices can be scheduled in topological order. In Naiad a
new dataflow vertex for an operator is constructed from the
one or two vertices whose outputs it consumes. The two
cases of unary and binary operators are presented in Fig-
ures 17(a) and 17(b). For these operators, the inputs must be
defined before the operator is constructed, and so we can
simply create a new vertex representing the operator and
connect the appropriate inputs.

To support data-parallel execution, all operators are di-
vided into one or more shards, each of which is responsible
for processing one part of a partition of its input differences.
Some operators—such as Select, Where and Concat—
process each record independently of all others, and the
partitioning is inherited from the upstream operator in the
dataflow. All other operators are equipped with a key func-
tion for each input, and the partitioning is performed accord-
ing to the operator’s key function. Each shard of an operator
can then be executed independently in parallel; in the cur-
rent implementation, each shard of an operator is mapped to
a different processor core. Some operators—such as Join

and Min —require that all records with the same key be pro-
cessed by the same shard. For these operators Naiad hashes
the key of each record to assign it to a shard, and then per-
forms a data-exchange to route the differences to consistent
shards.

5.1.1 Fixed Point
Naiad’s FixedPoint operator is not instantiated by a single
vertex, but rather by the subgraph shown in Figure 17(c).
The FixedPoint operator takes as a parameter a function
f from some collection trace to a collection trace of the
same type. The function f can be an arbitrary Naiad query,

and may itself contain the FixedPoint operator. We first
generate the dataflow graph for f, and then insert it in a
cyclic harness that computes the fixed point of f (where it
exists). In this section, we explain how that harness uses
differential dataflow to compute that fixed point efficiently.

The first vertex in the cyclic harness is an ingress operator
that extends the lattice elements associated with incoming
records with a new integer coordinate that will hold the
iteration counter. For each difference δa received as input,
the vertex outputs a difference δz satisfying

δz[(t, 0)] = δa[t] and δz[(t, 1)] = −δa[t] .

This corresponds to adding the input collection in iteration
0, and subtracting the input collection in iteration 1. As we
will now explain, these initial conditions are appropriate to
compute the fixed-point of the given function.

The supplied function f is applied to the ingress vertex,
generating a differential dataflow subgraph (which may it-
self contain more nested cycles). We then attach an incre-
menter vertex that takes an input difference δa to an output
difference δz as

δz[(t, i+ 1)] = δa[(t, i)] .

The output of the incrementer vertex is then returned to the
input of f and concatenated with the input from the ingress.

If the input to FixedPoint is some trace A, then f sees
A at iteration 0, as the only input at that time comes from the
ingress. At iteration 1, f is presented with both f(A) from
the feedback edge and−A from the ingress. This update log-
ically changes the input from A to f(A) and prompts the sub-
graph corresponding to f to produce f(f(A))−f(A) as out-
put (the necessary correction to its prior output f(A)). This
difference has its iteration index incremented and continues
the cycle. Generally, the combined ingress and backedge col-
lection X satisfies

δX[(t, i)] = fi(A[t])− fi−1(A[t])

The loop ceases to propagate updates on the back edge only
once δX[(t, i)] = 0, and so fixed point has been achieved.

Finally, we attach an egress vertex which strips off the
loop index and accumulates all differences, setting

δz[t] =
∑
i

δa[(t, i)] .

This vertex reports the limit of the iteration, the fixed point,
and we return it as the output of FixedPoint(f).

The ingress, incrementer and egress vertices are all im-
plemented as stateless operators that rewrite the lattice times
on records. They introduce negligible runtime overhead and
do not require a data exchange.

5.1.2 Prioritization
The Prioritize(priority, f) operator is also parame-
terized by a subgraph (Figure 17(d)), but its implementation



is much simpler than FixedPoint. The graph also has an
ingress vertex, which in this case introduces the lattice ele-
ment selected by the priority function, followed by the f

subgraph, followed by an egress vertex that strips off the lat-
tice element that was introduced in the ingress. Importantly,
the introduced priority results in a new lattice not through
the product construction, but through the lexicographic con-
struction. In the context of the subcomputation f, differences
at earlier priorities are reflected by all later priorities, inde-
pendent of the relation of subsequently added coordinates
(as might be added by a nested fixed point computation).

5.2 Incremental operators
Conceptually, a non-incremental operator can be made in-
cremental by maintaining enough state to reconstruct its in-
put collections at the previous times, adding differences to
those collections, and re-executing the operator on the new
collections. However, such an approach would perform work
proportional to the size of the collections for each update,
and would not provide the performance properties that we
desire for Naiad. In this subsection, we describe the imple-
mentation of a generic Naiad incremental vertex that im-
proves on this baseline, and then how this implementation
can be specialized for many different LINQ operators.

As a Naiad program executes, our generic operator is in-
voked repeatedly with difference traces δa and δb to incor-
porate into its inputs, and must produce an output difference
trace δz that reflects their addition. Equation (9) indicates
that our output δz =

∑
k δzk should satisfy

δzk[t] = f(Ak + ak,Bk + bk)[t]− f(Ak,Bk)[t]−
∑
s<t

δzk[s] .

In order to efficiently compute δz for arbitrary inputs, our
generic operator will store its full input difference traces δA
and δB indexed in memory. The present operator implemen-
tation stores this trace in triply-nested sparse array of counts,
indexed first by key k, then by lattice time t, then by record
r. Naiad maintains only non-zero counts, and as records are
added to or subtracted from the difference trace Naiad dy-
namically adjusts the allocated memory.

With δA and δB indexed by key, we can reconstruct Ak

and Bk and compute δzk explicitly using the pseudocode
of Figure 18, avoiding the reconstruction for keys whose
records have not changed. While reconstruction may seem
expensive, and counter to incremental computation, it is nec-
essary to be able to support operators such as GroupBy

for which the programmer may specify an arbitrary (non-
incremental) function to processes all records associated
with a particular key. We will soon see that many specific
operators have more efficient implementations.

One general optimization to the algorithm in Figure 18
reduces the number of lattice elements that are considered
in reconstructing the trace. As discussed in Section 4.3, we
only need to evaluate δzk at lattice elements t that are the

δz← 0
for all keys k ∈ δa or δb do
dzk ← 0
for all elements t ∈ lattice do
Ak ← ak ← 0
Bk ← bk ← 0
for all elements s ∈ lattice do

if s ≤ t then
Ak ← Ak + δAk[s]
Bk ← Bk + δBk[s]
ak ← ak + δak[s]
bk ← bk + δbk[s]
dzk[t]← dzk[t]− dzk[s]

end if
end for
dzk[t]← dzk[t]+f(Ak +ak, Bk +bk)−f(Ak, Bk)

end for
δz← δz + dzk

end for
return δz

Figure 18. Pseudocode for subvertex update logic.

least upper bound of a subset of non-zero times from δAk,
δBk, δak, or δbk, containing at least one non-zero time from
δak or δbk. This substantially reduces the amount of work
we need to perform.

Additionally, rather than reconstruct each Ak[t] from
scratch, we can simply update whatever previous Ak[s] we
reconstruct to Ak[t]. Doing so only involves differences

{δAk[r] : (r ≤ s) 6= (r ≤ t)} .

This often results in relatively few r in difference, often just
one in the case of advancing loop indices. Ensuring that we
process differences in a sequence that respects the partial
order, we need only scan from the greatest lower bound of s
and t until we pass both s and t.

5.2.1 Special Implementations
Although this generic vertex algorithm can be used to im-
plement any Naiad operator, we have specialized the imple-
mentation of the following operators to achieve better per-
formance:

Pipelined Operators Several operators—including Select,
Where, Concat and Except—are linear, which means they
can determine δzk as a function of only δak, with no depen-
dence on δAk. These operators do not need to maintain any
state, and apply record-by-record logic to the non-zero ele-
ments of δak—respectively transforming, filtering, repeating
and negating the input records.

Join The Join operator combines two input collections by
computing the cartesian product of those collections, and
yielding only those records where both input records have



the same key. Due to the distributive property of Join, the
relationship between inputs and outputs is straightforward:

zk = Ak ./ bk + ak ./ Bk + ak ./ bk .

While the implementation of Join does need to keep its
input difference trace resident, its implementation is much
simpler than the general case. An input δak can be handled
by making a sequential pass through the non-zero elements
of δBk, and analogously for δbk and δAk.

Aggregations Many of the data-parallel aggregations have
very simple update rules that do not require all records to be
re-evaluated. Count, for example, only needs to retain the
difference trace of the number of records for each key, de-
fined by the cumulative weight, rather than the set of records
mapping to that key which can be discarded. Sum has a simi-
lar optimization. Min and Max must keep their full input dif-
ference traces—because the retraction of the minimal (max-
imal) element leads to the second-least (greatest) record be-
coming the new output—but can often quickly establish that
an update requires no output by comparing the update to the
prior output, without reconstructing Ak.

6. Experimental Evaluation
In this section we evaluate the performance and scalability
of Naiad using several algorithms. Our goal is to assess the
hypothesis that differential dataflow can lead to efficient im-
plementations of incremental and iterative computation. At
this stage of Naiad’s development, absolute performance is
not our primary concern and so we have not yet expended
much effort on performance-related improvements. Never-
theless, we feel that the results presented in this section show
that our approach is viable.

Throughout this section we present results from a pro-
totype implementation that is written entirely in C#, using
version 4.0 of the .NET Framework.

6.1 Algorithms / Computations
We have selected four representative computations capable
of taking advantage of our incremental computations, but
poorly served by many existing data-parallel systems:

• Single-Source Shortest Paths The program is based on
the Bellman-Ford algorithm in which each node repeat-
edly broadcasts its distance from the source to all of
its neighbors, each of which accumulates their incom-
ing messages and selects the nearest. Figure 19 shows
the program using the FixedPoint operation to repeat-
edly apply the update rule. We evaluate two versions of
this algorithm, one with prioritization (approximating ∆-
stepping) and one without.
• Connected Components We use the algorithm from

Section 2 (see Figure 3). We also consider the prioritized
version shown in Figure 10.

struct Node { int id; int pred; int dist }
struct Edge { int src; int dest; int wgt }

// Initially, nodes contains the single source.
// The result contains all nodes, their distances
// from the source, and the node leading to them.
Collection<Node> SSSP(Collection<Node> nodes,

Collection<Edge> edges)
{

return nodes.FixedPoint(xs => Broadcast(xs, edges));
}

// Extends nodes to include any neighbors of nodes.
Collection<Node> Broadcast(Collection<Node> nodes,

Collection<Edge> edges)
{

return nodes.Join(edges,
node => node.id,
edge => edge.src,
(node, edge) =>

new Node(id: edge.dst,
pred: edge.src,
dist: node.dist + edge.wgt))

.Concat(nodes)

.Min(node => node.id, node => node.dist);
}

Figure 19. Naiad program for single-source shortest paths.

• Strongly Connected Components This algorithm is also
described in Section 2, with code shown in Figure 8.
• Smith-Waterman Sequence Alignment Smith-Waterman

is a dynamic programming algorithm for aligning two
sequences. For each pair (i, j) of indices into the two
strings, it computes the optimal alignment score, using
the scores for (i, j − 1), (i − 1, j), and (i − 1, j − 1).
From an initial set of scores at (i, 0) and (0, j), the dy-
namic program is a fixed point computation repeatedly
augmenting the set of known scores.

6.2 Absolute performance and memory footprint
We begin by examining the impact, without any parallelism,
of the Naiad system in terms of computation and memory
footprint. For these experiments we use an Intel Core i7 at
2.67 GHz. Table 2 reports the running time and working
set size for single-threaded LINQ and single-threaded Naiad
implementations of Single Source Shortest Paths (SSSP),
Strongly Connected Components (SCC) and Connected
Components (CC). Inputs to SSSP and SCC are randomly
generated graphs with 1M nodes. For CC we use the Ama-
zon graph from [19], which contains around 400,000 nodes
and 3.4 million edges.

Naiad’s FixedPoint and Prioritize operations result
in much faster running times than the ‘out-of-the-box’ LINQ
version. More interestingly, the incremental nature of Naiad
ensures that it is orders of magnitude faster than LINQ when
processing single element updates. The penalty paid is in the
memory footprint, which can be significant (up to a factor of
9 in Table 2).

We stress that LINQ is not intended for high-performance
computing, and our choice of it as a comparison is mostly to
evaluate the same algorithm in the same language with sim-



Running time Footprint (MB)
Prog Edges LINQ Naiad LINQ Naiad Updates
SSSP 1M 11.88s 4.71s 386 309 0.25ms
SSSP 10M 200.23s 57.73s 1,259 2,694 0.15ms
SCC 200K 30.56s 4.36s 99 480 1.12ms
SCC 2M 594.44s 51.84s 514 3,427 8.79ms
CC 3.4M 66.81s 9.90s 1,124 985 0.49ms

Table 2. Impact of Naiad for single-threaded executions.

ilar runtime overheads. Bespoke solutions for SSSP, SCC,
and CC implemented directly in C# have about an order of
magnitude lower elapsed time than Naiad, but crucially they
are still up to three orders of magnitude slower than Naiad’s
incremental recomputation.

6.3 Multi-processor evaluation
Moving to a parallel execution environment, we are inter-
ested in Naiad’s scaling properties. We ran the experiments
on an AMD Opteron ‘Magny-Cours’ with 48 (4 × 12-core)
1.9GHz processors and 64GB of RAM. Unless otherwise
stated, the input data are randomly generated with size cho-
sen to ensure that all computations fit in main memory, and
we repeat every run 5 times and report the mean.

6.3.1 Scalability
As the number of concurrent compute threads increases
while holding the input collection fixed, we hope to see
performance improve proportionally. The typical obstacle
to such “strong scaling” is that as the computation gets
faster, the relative time spent in synchronization and other
overheads increase. Figure 20 shows the scaling of Smith-
Waterman, SSSP, SCC and CC by plotting the ratio of single-
thread running time to x-thread running time for values of x
from 1 to 48 (the maximum core count on our server). The
lowest curve plots Smith-Waterman on a string length of
just 20,000, whose input size is “too small” to fully engage
Naiad’s scalability; the choice of block size (1,000) results
in a theoretical maximum scaling of 10x which we almost
achieve.

6.3.2 Incremental updates
The next experiment examines the performance associated
with incremental changes to inputs. Each computation in-
volves at least one loop, and we might expect that a single
input alteration could have far reaching effects. In this ex-
periment we introduce multiple epochs of input to the Naiad
computation, and the main variable we have to investigate is
the size of the batch we process in each epoch; larger batches
should result in higher throughput, due to additional paral-
lelism, but at the cost of higher per-epoch latency. We ran
SSSP on a one-million node graph using thread counts from
1 to 48, and then submitted updates to the graph in batches of
1, 10, 100, 1000 and 10,000 records. We found that through-
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put increased in proportion to the batch size, except for the
single-threaded case when it declined slightly.

We consider latency in Figure 21. There we see the cu-
mulative density plots as we vary thread count and batch
size, revealing that the coordination of multiple threads costs
when there is not much work (batch size 1) but helps when
there is much to do (batch size 10,000). The plot has vertical
lines showing the times for the full re-computations, and we
see that it is almost always much faster to update the inputs
rather than re-run the computation from scratch.

6.4 Prioritization
The three algorithms admit prioritized implementations,
where SSSP propagates smallest distances first, and CC/SCC
propagate low identifiers first. Doing so results in less
computation, but potentially less parallelization due to or-
dering of the increments. Figure 22 shows the speed in-
crease/decrease of CC, SCC and a version of SSSP where
we increased the diversity of the edge weights 100-fold over
previous experiments. Prioritization improves the single-
threaded runtime in each case and still exhibits positive
scaling. We deliberately performed the SSSP experiment
to highlight a pitfall of prioritization—making priorities too
fine-grain reduces parallelism so much that scaling suffers.
In this case the absolute performance of the non-prioritized
version is actually better than the prioritized once more than
about 18 cores are used. A coarser prioritization recovers the
performance and scalability for SSSP. The task of automat-
ing the selection of a prioritization function is left to future
research.

7. Related work
In recent years the use of dataflow abstractions has become a
popular way to simplify the implementation of parallel pro-
grams. To write a dataflow program the programmer defines
a set of purely functional sub-programs and the input/output
dependencies between those sub-programs, which form a
directed graph [9]. In this section, we survey some of the
dataflow systems that have inspired Naiad.

7.1 Parallel dataflow systems
If a program can be expressed in a functional style, with at
least some functions applied independently across a large
data set, it is amenable to automatic parallelization. The most
popular recent example of this approach is Dean and Ghe-
mawat’s MapReduce system [10], which allows programs
to be expressed using a pair of higher-order functions, map
and reduce. A runtime system can then execute these func-
tions in parallel on a shared-nothing cluster [10] or a shared-
memory multiprocessor [23].

Higher-level programming models can be built on top of
the MapReduce model. For example, Pig Latin [22] imple-
ments several relational-style operators on top of MapRe-
duce, while FlumeJava [8] transforms programs written as

a composition of user-defined functions into data-parallel
pipelines of MapReduce jobs.

A MapReduce job has a fixed, two-stage dataflow which
transfers the outputs of the parallel map invocations to the
inputs of the parallel reduce invocations. The Dryad sys-
tem [17] generalizes MapReduce by executing programs that
form an arbitrary directed-acyclic dataflow graph. Dryad
also admits several higher-level programming models, in-
cluding DryadLINQ [26], which transforms programs writ-
ten as LINQ queries [4] (resembling SQL queries embed-
ded in a C# program) into Dryad graphs. DryadLINQ also
encourages a functional style, by allowing programmers to
specify the behavior of each query operator as a C# lambda
expression (which may invoke arbitrary C# code).

While these systems and programming models have been
successful at extracting large-scale parallelism, their expres-
sive power is limited. In particular, none of the above pro-
gramming models supports a native (data-dependent) iter-
ation construct, which forces programmers to write itera-
tive programs as multiple independent MapReduce or Dryad
jobs. Furthermore, since these jobs are independent, neither
system has sufficient information to perform optimizations
across iterations.

7.2 Iterative dataflow
To extend the generality of dataflow systems, several re-
searchers have investigated ways of adding data-dependent
control flow constructs to parallel dataflow systems.

The Twister [13], HaLoop [6] and iMapReduce [29] sys-
tems add support for unbounded iteration to MapReduce.
Twister allows the programmer to specify a boolean func-
tion on the merged results of a single MapReduce job, which
can be used as a convergence test. HaLoop and iMapReduce
are more declarative: both systems allow the programmer
to define a distance metric between the results of two con-
secutive jobs. All three systems provide optimizations for
iterative computation, such as storing invariant input data in
memory between iterations. The execution model of these
systems is based on repeatedly executing a single MapRe-
duce job (or chain of MapReduce jobs). This prevents these
systems from executing more complicated dataflow graphs,
such as Pig, FlumeJava or DryadLINQ programs that form
an arbirary DAG.

More general systems have been developed for iterative
dataflow. Spark [27] supports a programming model that
is similar to DryadLINQ, with the addition of explicit in-
memory caching for frequently-reused inputs. Spark also
provides a “resilient distributed dataset” abstraction that al-
lows cached inputs to be reconstructed in the event of fail-
ure. The CIEL distributed execution engine [21] supports
the reliable execution of arbitary Turing-complete programs
that are transformed into “dynamic task graphs”; however
because CIEL does not constrain the programming or data
model, it is less amenable to automatic optimization than the
other systems.



The foregoing systems are all based on an acyclic dataflow
model, in which each vertex executes only once, and it-
eration is supported by extending the dataflow graph. An
alternative dataflow model allows cycles in the dataflow
graph, and repeated execution of the vertex code [9]. Cyclic
dataflow is used extensively in stream processing languages,
such as StreamIt [24] and SPADE/SPL [14], which use cy-
cles to represent feedback loops. StreamIt adopts a syn-
chronous dataflow model [18], in which each vertex con-
sumes and produces a static number of tokens on its incom-
ing and outgoing edges. This property allows StreamIt pro-
grams to be scheduled and aggressively optimized at com-
pile time, but it inhibits the implementation of programs
that produce variable or data-dependent numbers of out-
puts (such as database queries or MapReduce programs).
SPADE (now known as SPL) supports relational-style oper-
ators on incoming streams of data and static collections. In
SPADE, feedback edges can be used to adapt the behavior
of upstream operators, but they may not be used to produce
additional tuples (out of fear of non-termination).

The principal advantage of cyclic dataflow over acyclic
(but dynamic) dataflow is that vertices may retain muta-
ble local state between invocations. Most Naiad operators
take advantage of such state to offer significantly lower la-
tency than acyclic dataflow systems. Unlike existing cyclic
dataflow systems, Naiad supports non-iterative MapReduce-
or Dryad-style programs with unconstrained inputs and
outputs, as well as Turing-complete programs with data-
dependent iteration (and possible non-termination).

7.3 Incremental computation
MapReduce and Dryad have origins in batch processing,
which means that they retain no state and reprocess the
entire data set when the inputs change. When the change is
relatively small—as it may be in an iterative computation—
it would be more attractive to use an incremental model of
computation.

The simplest form of incremental computation is memo-
ization. Of the above-mentioned systems, Spark supports the
explicit memoization of frequently-used queries, CIEL uses
a deterministic naming scheme and lazy evaluation to mem-
oize the results of identical tasks, and DryadLINQ can use
Nectar [15] to identify common subexpressions across mul-
tiple queries. Memoization only works when the inputs are
identical, so Nectar additionally supports incremental com-
putation when records are appended to the input, by caching
the intermediate results and combining them with partial re-
sults from the appended records.

A more general approach to incremental computation is
self-adjusting computation, which Acar proposed in his the-
sis [1]. In a self-adjusting computation, the data dependen-
cies are tracked explicitly, and changes to the inputs are
handled by a fine-grained change propagation algorithm.
Until recently, self-adjusting computation was applied only
to sequential computations. Bhatotia et al. developed In-

coop [3], which is an incremental version of MapReduce
based on Acar’s model. Incoop executes unmodified MapRe-
duce computations, and incrementally executes programs
that use associative aggregation functions. However, it does
not support iterative MapReduce jobs.

In contrast to general self-adjusting computation, Naiad
programs are composed of data-parallel operators that have
an incremental implementation. While this is a more restric-
tive model, it includes any composition of MapReduce jobs,
as well as more general data-parallel functionality such as
our FixedPoint operator.

8. Conclusions
We have introduced a new computational framework, dif-
ferential dataflow with partially ordered logical time, and
shown how it can be used as the basis for a data-parallel
system that is fundamentally incrementalized and also al-
lows fully composable nested iteration and prioritization.
We have shown that a careful implementation can minimize
the overhead of maintaining and reasoning over partially-
ordered execution traces, leading to a system that supports
incrementalized computation of such properties as strongly
connected components over real-world graphs, where re-
computing components after graph updates is several orders
of magnitude faster than re-running the full analysis.

The implementation described in this paper is a proof
of concept of the viability of differential dataflow, but is
simplified in some ways and restricted to run on a single
shared-memory computer. Nevertheless, the framework is
intended to be suitable for scalable computations over a
computing cluster. The coordination between vertices is al-
ready explicit, through messages, and can straighforwardly
be distributed over a network. However, numerous issues
emerge from an attempt to scale up the system, most signifi-
cantly in scheduling. Presently, the compute threads proceed
through the computation in a coordinated fashion, exploiting
data-parallelism but largely ignoring task and pipeline paral-
lelism. Fortunately, our incremental update rules allow any
computation to be safely processed in any order; the coordi-
nation is present only to ensure timely convergence. We are
currently exploring these issues in a prototype cluster im-
plementation. Our current implementation also suffers from
a memory footprint that strictly grows as computation pro-
gresses, however in many cases state can be consolidated
once all effects of an input batch are reflected in the outputs.

We have begun to explore uses of more exotic lattices
within differential dataflow, and have several promising
leads. While some are relatively direct (e.g. letting collec-
tions vary as a function of a security lattice), one appears to
lift the level of abstraction again, from fixed point iteration
to recursion. Specifically, nested data-parallelism [5] arises
from a lattice whose elements are sequences of elements
from some base lattice, where s ≤ t iff si ≤ ti for each
component i. Differences are passed into and returned from



recursive calls by adding to and removing from the end of
the lattice sequence, but all flow through the same (cyclic)
dataflow graph.

The problems of adding both incrementality and itera-
tion to scalable dataflow computations have been extensively
investigated in recent years. We believe that the differen-
tial dataflow framework is the first general solution to these
problems, elegantly combining both mechanisms within the
same system.
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Type Operator Stateful? Deviation from LINQ?
Unary Select No

SelectMany No
Where No
Aggregate Yes Supports subtraction
Count Yes Returns collection
Sum Yes Returns collection
Min Yes Returns collection
Max Yes Returns collection
Distinct Yes Returns collection
GroupBy Yes

Binary Join Yes
Union Yes Multiset semantics
Intersect Yes Multiset semantics
Except No Multiset semantics
Concat No

Table 3. LINQ operators implemented in Naiad.

A. Naiad language definition
This Appendix specifies all the operators provided by Na-
iad and outlines differences with standard LINQ operators
where applicable. The base type of collections in Naiad
is Collection<R,T> which corresponds to a multiset of
records of type R parameterized by a lattice of type T. By
including the lattice as part of the collection and operator
types we give the C# compiler the required information to
detect invalid uses of collections with incompatible lattices.

A.1 Naiad versions of LINQ operators
Table 3 lists the LINQ operators that have corresponding
implementations in Naiad, indicates whether they are state-
ful (for example, as described for the Distinct operator in
Section 3.1), and notes where the signature and semantics
deviate from the LINQ version. Most LINQ methods return
either sequences or singleton values, whereas in Naiad op-
erators always return a collection. For example, the LINQ
version of Count takes an entire collection and returns an in-
teger, while the Naiad version additionally takes a key func-
tion, and returns a collection containing a count correspond-
ing to each unique key mapped from an element in the input.
We similarly define data-parallel versions of other common
aggregation operators, (e.g. Sum, Min, etc.), based on their
LINQ counterparts with an additional key function. This al-
lows these aggregates to participate in further dataflow, and
support optimized implementations as cases of GroupBy.

We give the syntax of Select, a representative unary op-
erator that produces the collection that results from mapping
a given function across each element in an input collection:

Collection<S,T>

Select<R,S,T>(Collection<R,T> input,

Func<R,S> selector)

The type parameters R and S correspond to the record types
in the input and output collections, respectively, and the
selector is a function from R to S.

Select and the other operators modeled on standard
LINQ version are additionally parameterized by a single lat-
tice type T. Informally, this means that the operator matches,
and does not change, the lattice associated with records in
the input collection.

The most general unary operator is GroupBy, which takes
a collection, a key function, and a reduction function from
groups to output lists. It collates the input by key, applies the
reduction function to each group, and accumulates the result:

Collection<S,T>

GroupBy<R,K,S,T>(Collection<R,T> input,

Func<R,K> key,

Func<K,

IEnumerable<R>,

IEnumerable<S>> reducer)

The reducer is a function from the key and a group of
input records to an IEnumerable<R> of output records.
IEnumerable<R> is the generic interface in .NET repre-
senting a collection of objects that can be enumerated by
an iterator, and allows the programmer the flexibility to ex-
press the reducer as a LINQ query [4]. In LINQ, GroupBy
returns an object of type IGrouping that is frequently sub-
sequently processed by a reducer. The Naiad syntax includes
the reducer in the call to GroupBy directly, since it simpli-
fies some optimizations, and because IGroupings cannot be
directly constructed in C#.

Among the binary operators in Table 3, the set operators,
along with Concat, are functions of the frequency of each
element in either collection. For example, Concat produces
the collection where the frequencies of each element in ei-
ther collection are added:

Collection<R,T> Concat<R,T>(Collection<R,T> input1,

Collection<R,T> input2)

The set operators Union, Intersect and Except vary from
their LINQ namesakes by acting on multisets as needed for
Naiad collections where elements have counts. For instance,
the Naiad version of Union returns a collection in which the
count of each record is the maximum over the two input col-
lections. In contrast, in the LINQ version of Union the out-
put is a set containing each element that appears in either of
the two input sets. The other Naiad set operators Intersect
and Except are defined analogously. Set semantics can be
recovered by post-applying the Distinct operator.

Finally, Join is based on the relational equi-join operator,
./, which logically computes the cartesian product of two
input collections and emits pairs of records which map to
the same key:

Collection<W,T>

Join<R,S,K,W,T>(Collection<R,T> input1,

Collection<S,T> input2,

Func<R,K> key1,

Func<S,K> key2,

Func<R,S,W> selector)



Type Operators Comment
Ordering OrderBy See text

OrderByDescending
ThenBy
ThenByDescending
Reverse
Skip, SkipWhile
Take, TakeWhile
SequenceEqual
First, FirstOrDefault
Last, LastOrDefault

Unplanned Average Use Sum and Count
Contains Use Where and Empty
Single
DefaultIfEmpty Convenience method
SingleOrDefault Convenience method
GroupJoin Use CoGroupBy
All, Any, Empty Use Select

Table 4. LINQ operators not implemented in Naiad.

In Naiad as in LINQ, Join does not emit pairs of records, but
rather applies the function selector to each pair of records
with matching keys.

Table 4 lists the LINQ operators (for data processing) that
we have not implemented in Naiad. Most of the unplanned
operators are convenience methods and can be derived from
others. Several are still “to do” simply because they have not
been needed for any of the application programs written so
far. The most notable omissions from the Naiad operators
are the ordering functions, a consequence of Naiad’s use of
multisets that was discussed at the end of Section 2.

A.2 New Naiad operators
The operators introduced by Naiad are listed in Table 5.
CoGroupBy is the most general binary operator, analogous
to GroupBy, but does not exist in LINQ:

Collection<W,T>

CoGroupBy<R,S,K,W,T>(Collection<R,T> start,

Collection<S,T> other,

Func<R,K> key1,

Func<S,K> key2,

Func<K,

IEnumerable<R>,

IEnumerable<S>,

IEnumerable<W>> reducer)

It groups records by the supplied key, and applies the re-
duction function to corresponding pairs of groups if either
is non-empty. CoGroupBy simplifies the implementation of
a number of algorithms, and we believe it was an unfor-
tunate omission from LINQ: its inclusion in Naiad is not
specifically related to incremental computation or differen-
tial dataflow.

Operators FixedPoint, Prioritize, and ExtendTime

are used to access the core Naiad functionality that arises
from the differential dataflow model and are explained be-

Type Operator Stateful? Comment
Unary FixedPoint Yes

Prioritize No
ExtendTime No
Consolidate No Tests for cancellation

of records
Monitor No Debugging convenience:

runs user-specified lambda
on a list

Binary CoGroupBy Yes Analogous to GroupBy

Table 5. New Naiad operators.

low. Consolidate is used as a performance hint to spec-
ify locations in the dataflow graph where it may be useful
to pause for record cancellation. As an example, consider
a Select operator that classifies incoming records, so each
output record is a member of a small finite alphabet. Since
Select is a stateless, streaming operator, it will output a
long sequence of records each with weight 1. The addition
of a Consolidate operator after Select would replace this
long sequence with a more compact multiset representation,
in which each alphabet symbol appears only once for any
given lattice time, with its weight corresponding to the num-
ber of times the Select emitted it at that time. Monitor is
purely a debugging aid, allowing user code to report statis-
tics of the records as they pass through.

A.2.1 FixedPoint

FixedPoint in Naiad is a declarative operator specifying
(potentially unbounded) iteration. The programmer provides
an input collection and a function that will be repeatedly
applied to the collection until a fixed point is reached:

Collection<R,T>

FixedPoint<R,T>(Collection<R,T> input,

Func<Collection<R,U>,

Collection<R,U>> f)

Conceptually, the FixedPoint operator returns f∞(input).
If the repeated application of f to input has a fixed point,
there will exist some n such that fi(input) = fi+1(input)

for all i ≥ n. If not, the result is undefined and the computa-
tion may diverge.

In the fixed-point function, f, the lattice type U is the
augmentation of T with an additional integer component that
corresponds to the current iteration count.

A.2.2 Prioritize

In many data-parallel programming models, operators are
applied to every record in a collection at once. In a Naiad
program, the programmer can use the lattice-based times to
specify the order in which elements in the same collection
are processed. Systems such as PrIter [30] have used the
same intuition to accelerate the convergence of many algo-
rithms in a MapReduce setting. In Naiad, we introduce the
Prioritize operator, which is a declarative form of PrIter’s
priority queue:



Collection<R,T>

Prioritize<R,T>(Collection<R,T> input,

Func<R,int> priority,

Func<Collection<R,U>,

Collection<R,U>> f)

As with FixedPoint, the Prioritize operator extends the
lattice element associated with each record in the input, and
reverts to the original lattice in the output. The priority

function in the above prototype associates an integer with
each record, and the operator constructs a record in a new
lattice, U.

Prioritization has an effect only when f contains a FixedPoint
operator (e.g. the connected components query of Figure 3).
In this case, the records will appear to be injected into the
body of FixedPoint computation ordered first by their pri-
ority, then by their original time in T. If processing the high-
priority elements first leads to less variation in the collec-
tions (e.g. by “locking in” minimal values in the connected
components algorithm) the size of the intermediate data col-
lection will be more compact and require less computation.

A.2.3 ExtendTime

In order for the types of lattices of collections to agree, the
user sometimes has to manually extend them. Consider for
example the connected components program of Figure 3, in
which the lattice types were deliberately omitted for clar-
ity. In fact, the LocalMin function requires its arguments
to be collections with the same lattice type. However, the
FixedPoint operator extends the lattice of nodes with an
additional loop coordinate, so in the invocation

nodes.FixedPoint(x => LocalMin(x, edges))

the x and edges collections have different lattice types, since
x has been extended with the loop coordinate and nodes has
not.

The user deals with the corresponding mismatch using
the ExtendTime operator to add a corresponding coordinate
to edges:

nodes.FixedPoint(x => LocalMin(x,edges.ExtendTime()))

Since edges does not vary over the fixed-point execution,
the extended lattice coordinate of every record in edges is
set to 0.

There is an analogous ExtendTime method for prioriti-
zation, which takes a priority function and sets the extended
coordinate using that function.


