
PyTorch Distributed: Experiences on Accelerating
Data Parallel Training

Shen Li† Yanli Zhao† Rohan Varma† Omkar Salpekar†
Pieter Noordhuis∗ Teng Li† Adam Paszke‡

Jeff Smith† Brian Vaughan† Pritam Damania† Soumith Chintala†

{shenli, yanlizhao, rvarm1, osalpekar}@fb.com,
pcnoordhuis@gmail.com, tengli@fb.com, adam.paszke@gmail.com,

{jeffksmith, bvaughan, pritam.damania, soumith}@fb.com

†Facebook AI ‡University of Warsaw

ABSTRACT
This paper presents the design, implementation, and evalu-
ation of the PyTorch distributed data parallel module. Py-
Torch is a widely-adopted scientific computing package used
in deep learning research and applications. Recent advances
in deep learning argue for the value of large datasets and
large models, which necessitates the ability to scale out
model training to more computational resources. Data par-
allelism has emerged as a popular solution for distributed
training thanks to its straightforward principle and broad
applicability. In general, the technique of distributed data
parallelism replicates the model on every computational re-
source to generate gradients independently and then com-
municates those gradients at each iteration to keep model
replicas consistent. Despite the conceptual simplicity of
the technique, the subtle dependencies between computa-
tion and communication make it non-trivial to optimize the
distributed training efficiency. As of v1.5, PyTorch natively
provides several techniques to accelerate distributed data
parallel, including bucketing gradients, overlapping compu-
tation with communication, and skipping gradient synchro-
nization. Evaluations show that, when configured appropri-
ately, the PyTorch distributed data parallel module attains
near-linear scalability using 256 GPUs.

PVLDB Reference Format:
Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter No-
ordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pri-
tam Damania, Soumith Chintala. PyTorch Distributed: Experi-
ences on Accelerating Data Parallel Training. PVLDB, 13(12):
3005-3018, 2020.
DOI: https://doi.org/10.14778/3415478.3415530

∗This work was conducted when Pieter Noordhuis was an
employee at Facebook.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415530

1. INTRODUCTION
Deep Neural Networks (DNN) have powered a wide spec-

trum of applications, ranging from image recognition [20],
language translation [15], anomaly detection [16], content
recommendation [38], to drug discovery [33], art genera-
tion [28], game play [18], and self-driving cars [13]. Many
applications pursue higher intelligence by optimizing larger
models using larger datasets, craving advances in distributed
training systems. Among existing solutions, distributed data
parallel is a dominant strategy due to its minimally intru-
sive nature. This paper presents the design, implementa-
tion, and evaluation of the distributed data parallel package
in PyTorch v1.5 [30].

Training a DNN model usually repeatedly conducts three
steps [26], the forward pass to compute loss, the backward
pass to compute gradients, and the optimizer step to update
parameters. The concept of data parallelism is universally
applicable to such frameworks. Applications can create mul-
tiple replicas of a model, with each model replica working on
a portion of training data and performing the forward and
backward passes independently. After that, model replicas
can synchronize either their gradients or updated parame-
ters depending on the algorithm. It’s nominally possible to
build a working version of data parallel purely on the ap-
plication side, as it only requires inserting appropriate com-
munications into every iteration. However, squeezing out
the last bit of performance takes an enormous amount of ef-
fort in design and tuning. Providing native distributed data
parallel APIs on the platform side would help application
developers focus on optimizing their models, while the plat-
form developing team could continuously and transparently
improve the training speed. To provide a general distributed
data parallel package, the challenges are three-fold.

• Mathematical equivalence: The purpose of data
parallel is to speed up training on large datasets. Ap-
plications expect to harvest the same result model as if
all training had been performed locally without model
replication. This requires mathematical equivalence to
local training despite its distributed nature.

• Non-intrusive and interceptive API: Application
developments usually start from local models and then
scale out when necessary. To avoid the exorbitant

hurdles during the transition, the API must be non-
intrusive in application code. On the other hand, the
API needs to allow the internal implementation to
timely intercept signals to carry out communications
and system optimizations.

• High performance: Data parallel training is sub-
ject to subtle dependencies between computations and
communications. The design and implementation have
to explore the solution space to efficiently convert more
resources into higher training throughput.

PyTorch provides distributed data parallel as an nn.Module

class, where applications provide their model at construction
time as a sub-module. To guarantee mathematical equiva-
lence, all replicas start from the same initial values for model
parameters and synchronize gradients to keep parameters
consistent across training iterations. To minimize the intru-
siveness, the implementation exposes the same forward [7]
API as the user model, allowing applications to seamlessly
replace subsequent occurrences of a user model with the dis-
tributed data parallel model object with no additional code
changes. Several techniques are integrated into the design to
deliver high-performance training, including bucketing gra-
dients, overlapping communication with computation, and
skipping synchronization.

Evaluations were conducted on an exclusive 32-GPU clus-
ter and on 256 GPUs from a much larger shared entitlement.
We developed benchmarks to evaluate the distributed pack-
age across different scales to present an in-depth view of
the performance implications of different optimization tech-
niques and configurations. Experiments also cover the com-
parison between NCCL and Gloo communication libraries.
The results show that 1) communication is the dominant
training latency contributor, and its impact increases with
model sizes; 2) bucket sizes considerably affect communica-
tion efficiency, which could lead to more than 2X speedup if
configured properly; 3) skipping synchronizations appropri-
ately would significantly reduce amortized communication
overhead without noticeably degrading convergence speed.

Techniques described in this paper were first released in
PyTorch v1.1. During the past year, we have seen significant
adoption both internally and externally. Within Facebook,
a workload study from 05/11/20 to 06/05/20 shows that
more than 60% of production GPU hours during that period
were spent on the PyTorch distributed data parallel pack-
age across a wide variety of applications, including speech,
vision, mobile vision, translation, etc. There are three main
contributions in this paper. First, this paper reveals the
design and implementation of a widely adopted industrial
state-of-the-art distributed training solution. Second, this
paper highlights real-world caveats (e.g., due to pluralized
graphs) that were overlooked by prior work. Third, we share
performance tuning experiences collected from serving in-
ternal teams and open-source community users and summa-
rized several directions for future improvements.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly introduces PyTorch and data parallelism. Sec-
tion 3 elaborates the design for the PyTorch distributed data
parallel module. Implementations and evaluations are pre-
sented in Section 4 and Section 5 respectively. Then, Sec-
tion 6 discusses lessons learned and opportunities for future
improvements, and Section 7 surveys related work. Finally,
Section 8 concludes the paper.

2. BACKGROUND
Before diving into distributed training, let us briefly dis-

cuss the implementation and execution of local model train-
ing using PyTorch. Then, we explain and justify the idea of
data parallelism and describe communication primitives.

2.1 PyTorch
PyTorch organizes values into Tensors which are generic

n-dimensional arrays with a rich set of data manipulating
operations. A Module defines a transform from input val-
ues to output values, and its behavior during the forward
pass is specified by its forward member function. A Module

can contain Tensors as parameters. For example, a Linear

Module contains a weight parameter and a bias parameter,
whose forward function generates the output by multiplying
the input with the weight and adding the bias. An appli-
cation composes its own Module by stitching together native
Modules (e.g., linear, convolution, etc.) and Functions (e.g.,
relu, pool, etc.) in the custom forward function. A typi-
cal training iteration contains a forward pass to generate
losses using inputs and labels, a backward pass to compute
gradients for parameters, and an optimizer step to update
parameters using gradients. More specifically, during the
forward pass, PyTorch builds an autograd graph to record
actions performed. Then, in the backward pass, it uses the
autograd graph to conduct backpropagation to generate gra-
dients. Finally, the optimizer applies the gradients to update
parameters. The training process repeats these three steps
until the model converges.

2.2 Data Parallelism
PyTorch offers several tools to facilitate distributed train-

ing, including DataParallel for single-process multi-thread
data parallel training using multiple GPUs on the same
machine, DistributedDataParallel for multi-process data
parallel training across GPUs and machines, and RPC [6]
for general distributed model parallel training (e.g., param-
eter server [27]). The remainder of this paper focuses on
DistributedDataParallel. Data parallelism enables dis-
tributed training by communicating gradients before the op-
timizer step to make sure that parameters of all model repli-
cas are updated using exactly the same set of gradients, and
hence model replicas can stay consistent across iterations.

Parameter averaging is another popular technique to scale
out model training. Similarly, it can launch multiple pro-
cesses across multiple machines, but instead of synchroniz-
ing gradients, parameter averaging directly computes the
average of all model parameters. This occurs after the lo-
cal optimizer step, meaning that parameter averaging can
be implemented completely as an auxiliary step and does
not need to interact with local training steps at all, which is
attractive as it can easily and cleanly decouple the code of
distributed training and local iterations. There are several
caveats with parameter averaging.

• Parameter averaging can produce vastly different re-
sults compared to local training, which, sometimes,
can be detrimental to model accuracy. The root cause
is that parameter averaging is not mathematically equ-
ivalent to processing all input data locally, especially
when the optimizer relies on past local gradients val-
ues (e.g., momentum). As different model replicas are
likely to see different gradients, the states in optimiz-
ers can gradually diverge, causing conflicting gradient

descent directions. This can result in inexplicable dif-
ferences in performance when switching from locally
optimized models to large scale deployed models.

• The structure of parameter averaging orchestrates com-
putation (i.e., backward pass) and communication (i.e.,
computing average) into non-overlapping phases, using
optimizer step() functions as a hard separation point.
Regardless of how vigorously we optimize the compu-
tation or communication, one type of resource will stay
idle at any given time instance, giving up a substantial
performance optimization opportunity.

Given the above fundamental pitfalls, we decided to im-
plement distributed training using data parallelism to syn-
chronize gradients instead of parameters. Note that, ap-
plications can still easily build parameter averaging using
PyTorch. In fact, the collective communication feature de-
scribed in Section 3.3 is an appropriate solution for this use
case. Applications just need to explicitly launch AllReduce

operations to calculate averaged parameters accordingly.

2.3 AllReduce
AllReduce is the primitive communication API used by

DistributedDataParallel to compute gradient summation
across all processes. It is supported by multiple communi-
cation libraries, including NCCL [2], Gloo [1], and MPI [4].
The AllReduce operation expects each participating pro-
cess to provide an equally-sized tensor, collectively applies
a given arithmetic operation (e.g., sum, prod, min, max) to
input tensors from all processes, and returns the same re-
sult tensor to each participant. A naive implementation
could simply let every process broadcast its input tensor
to all peers and then apply the arithmetic operation in-
dependently. However, as AllReduce has significant im-
pact on distributed training speed, communication libraries
have implemented more sophisticated and more efficient al-
gorithms, such as ring-based AllReduce [2] and tree-based
AllReduce [23]. As one AllReduce operation cannot start
until all processes join, it is considered to be a synchronized
communication, as opposed to the P2P communication used
in parameter servers [27].

3. SYSTEM DESIGN
PyTorch [30] provides a DistributedDataParallel (DDP1)

module to help easily parallelize training across multiple pro-
cesses and machines. During distributed training, each pro-
cess has its own local model replica and local optimizer.
In terms of correctness, distributed data parallel training
and local training must be mathematically equivalent. DDP

guarantees the correctness by making sure that all model
replicas start from the exact same model state, and see
the same parameter gradients after every backward pass.
Therefore, even though optimizers from different processes
are all independent, they should be able to bring their local
model replicas to the same state at the end of every itera-
tion2. Fig. 1 illustrates building blocks of DDP, which con-
tains a Python API frontend, C++ gradient reduction core
algorithm, and employs the c10d collective communication

1For simplicity, the rest of the paper uses the acronym DDP
to represent DistributedDataParallel henceforth.
2For optimizers with intrinsic randomness, different pro-
cesses can initialize their states using the same random seed.

DistributedDataParallel

Python API

Gradient Reduction

Collective Communication

NCCL Gloo MPI

Figure 1: Building Blocks

library. The following
sections are presented
in the top-down order
of this stack graph.

Section 3.1 presents
general principles that
drive DDP API de-
sign. Section 3.2 ex-
plains gradient reduc-
tion techniques used
in the PyTorch dis-
tributed data parallel
package. Finally, Sec-
tion 3.3 discusses the
collective communica-
tion backend options
for DDP.

3.1 API
When designing the API, we have defined two design goals

to achieve the necessary functionality.

• Non-intrusive: The API must be non-intrusive to
applications. Application developers usually start from
writing local training scripts, and scale out when hit-
ting the resource limit on a single machine. At that
point, it is unacceptable to ask developers to rewrite
the entire application to enable distributed data par-
allel training. Instead, the developer should be able to
reuse the local training script with minimal modifica-
tions.

• Interceptive: The API needs to allow the implemen-
tation to intercept various signals and trigger appro-
priate algorithms promptly. Distributed data parallel
aims at accelerating training by using more compu-
tational resources. This process requires subtle opti-
mizations in both computations and communications
to achieve the best performance. Hence, the API must
expose as many optimization opportunities as possible
to the internal implementation.

Given the above requirements, we implemented distributed
data parallel as an nn.Module, which takes the local model as
a constructor argument and transparently synchronizes gra-
dients in the backward pass. The code snippet below shows
an example of using DDP module. This example uses an
nn.Linear layer to create a local model on line 10. Then, it
converts the local model into a distributed training model on
line 11 and sets up the optimizer on line 12. Line 14 through
23 are typical forward pass, backward pass, and optimizer
step implementations. In this toy distributed training ex-
ample, line 11 is the only difference that converts a local
training application into a distributed one, which satisfies
the non-intrusive requirement. It also fulfills the intercep-
tive requirement. The constructor allows DDP to inspect the
model structure and parameters. After construction, the lo-
cal model is replaced by the distributed one, which can then
easily intercept the forward() call to perform necessary ac-
tions accordingly. For the backward pass, DDP relies on back-
ward hooks to trigger gradient reduction, which will be in-
voked by the autograd engine when executing backward()

on the loss tensor.

1K 10K 100K 1M 10M
Number of Parameters per AllReduce

10 4

10 3

10 2

10 1

100

To
ta

l N
C

C
L

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

(a) NCCL

1K 10K 100K 1M 10M
Number of Parameters per AllReduce

10 1

100

101

To
ta

l G
lo

o
Ex

ec
ut

io
n

Ti
m

e
(S

ec
)

(b) GLOO

0 1 2 3 4 5 6
Number of Parameters 1e7

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
El

ap
se

d
in

 B
ac

kw
ar

d
on

 G
PU

 (S
ec

) Measured Range
Median Time

(c) GPU

0 1 2 3 4 5 6
Number of Parameters 1e7

0

1

2

3

4

5

6

Ti
m

e
El

ap
se

d
in

 B
ac

kw
ar

d
on

 C
PU

 (S
ec

) Measured Range
Median Time

(d) CPU

Figure 2: Communication vs Computation Delay

1 import torch
2 import torch.nn as nn
3 import torch.nn.parallel as par
4 import torch.optim as optim
5

6 # initialize torch.distributed properly
7 # with init_process_group
8

9 # setup model and optimizer
10 net = nn.Linear (10, 10)
11 net = par.DistributedDataParallel(net)
12 opt = optim.SGD(net.parameters (), lr =0.01)
13

14 # run forward pass
15 inp = torch.randn(20, 10)
16 exp = torch.randn(20, 10)
17 out = net(inp)
18

19 # run backward pass
20 nn.MSELoss ()(out , exp).backward ()
21

22 # update parameters
23 opt.step()

3.2 Gradient Reduction
The gradient reduction algorithm in DDP has evolved over

the past releases. To introduce the structure of the current
implementation, let us start from a naive solution, gradually
introduce more complexities, and land in the current version
as of today in PyTorch v1.5.0. This will also explain how
the same simple API described in Section 3.1 allows us to
install various performance optimization algorithms.

3.2.1 A Naive Solution
As mentioned in the beginning of Section 3, DDP guaran-

tees correctness by letting all training processes (1) start
from the same model state and (2) consume the same gra-
dients in every iteration. The former can be achieved by
broadcasting model states from one process to all others at
the construction time of DDP. To implement the latter, a
naive solution can insert a gradient synchronization phase

after the local backward pass and before updating local pa-
rameters. However, the API shown in Section 3.1 does not
provide an explicit entry point for this phase as there is
nothing between backward() and step(). Fortunately, the
PyTorch autograd engine accepts custom backward hooks.
DDP can register autograd hooks to trigger computation after
every backward pass. When fired, each hook scans through
all local model parameters, and retrieves the gradient tensor
from each parameter. Then, it uses the AllReduce collec-
tive communication call to calculate the average gradients
on each parameter across all processes, and writes the result
back to the gradient tensor.

The naive solution works correctly, but there are two per-
formance concerns.

• Collective communication performs poorly on small
tensors, which will be especially prominent on large
models with a massive number of small parameters.

• Separating gradient computation and synchronization
forfeits the opportunity to overlap computation with
communication due to the hard boundary in between.

The following sections elucidates solutions to address the
above two concerns.

3.2.2 Gradient Bucketing
The idea of gradient bucketing is motivated by the ob-

servation that collective communications are more efficient
on large tensors. Fig. 2 (a) and (b) provide a quantitative
view, which show the total execution time to AllReduce

60M torch.float32 parameters with different numbers of
parameters per AllReduce. To maximize the bandwidth uti-
lization, AllReduce operations are launched asynchronously
and block waiting on all of them together, mimicking DDP’s
gradient reduction algorithm. The experiments are con-
ducted on an NVLink [3] enabled server with two NVIDIA
Quadro GP100 GPUs. NCCL [2] AllReduce runs on CUDA
input tensors directly, while Gloo [1] AllReduce runs on
CPU input tensors to eliminate the overhead of copying be-
tween CUDA memory to CPU memory when using Gloo
backend. The total communication time clearly decreases
when using larger input tensors, for both NCCL and Gloo.
Gloo reaches pinnacle speed at around 500K parameters per
input tensor, while there is no clear saturation signal for
NCCL on NVLink with even 20M-parameter GPU tensors.

These experiments suggest that, instead of launching a
dedicated AllReduce immediately when each gradient ten-
sor becomes available, DDP can achieve higher throughput
and lower latency if it waits for a short period of time and
buckets multiple gradients into one AllReduce operation.
This would be especially helpful for models with many small
parameters. However, DDP should not communicate all gra-
dients in one single AllReduce, otherwise, no communication
can start before the computation is over. Fig. 2 (c) and (d)
show the GPU and CPU backward computations time of a
ResNet152 [20] that contains roughly 60M parameters. The
X axis is the number of ready gradients and the Y axis the
time elapsed since the beginning of the backward pass. The
backward on GPU takes about 250ms to complete, which is
in the same order of magnitude as NCCL on NVLink. This
conclusion also applies to Gloo and CPU backward. These
measurements herald that, with relatively small bucket sizes,
DDP can launch AllReduce operations concurrently with the

t t
g1

g2

g3

g4

g1

g2

g3

g4

Process 1 Process 2

t t
g1

g2

g3

g4

g1

g2

g3

g4

Process 1 Process 2

Ready
Gradient

Skipped
Gradient AllReduce Ready

TimeBucket

(a) (b)

Figure 3: Gradient Synchronization Failures

backward pass to overlap communication with computation,
which would make a difference in per iteration latency.

3.2.3 Overlap Computation with Communication
The AllReduce operation on gradients can start before

the local backward pass finishes. With bucketing, DDP only
needs to wait for all contents in the same bucket before
launching communications. Under such settings, trigger-
ing AllReduce at the end of the backward pass is no longer
sufficient. It needs to react to more frequent signals and
launches AllReduce more promptly. Therefore, DDP regis-
ters one autograd hook for each gradient accumulator. The
hook fires after its corresponding accumulator updating the
gradients, and will inspect the bucket it pertains. If hooks
of all gradients in the same buckets have fired, the last hook
will trigger an asynchronous AllReduce on that bucket.

Two caveats require caution. First, the reducing order
must be the same across all processes, otherwise, AllReduce
contents might mismatch, resulting in incorrect reduction
result or program crash. However, PyTorch dynamically
builds the autograd graph in every forward pass, and differ-
ent processes might not agree on the gradient ready order.
Fig. 3 (a) shows one example, where the two vertical axes
represent time and dotted lines indicate when a gradient is
ready. In process 1, the four gradients are computed in or-
der, but the gradient g2 are computed after g3 and g4 on
process 2. In this case, if all processes AllReduce buckets
as soon as they become ready, the AllReduce content would
mismatch. Therefore, all processes must use the same buck-
eting order, and no process can launch AllReduce on bucket
i+1 before embarking bucket i. If bucket 0 is the last one
that becomes ready, there is no way that communication can
overlap with computation. PyTorch v1.5.0 addresses this
problem by using the reverse order of model.parameters()

as the bucketing order, assuming that, layers are likely regis-
tered according to the same order as they are invoked in the
forward pass. Hence, the reverse order should approximately
represent the gradient computation order in the backward
pass. Admittedly, this is not a perfect solution, but is an ap-
proximation that we can rely on with minimum engineering
overhead.

Second, it is possible that one training iteration only in-
volves a sub-graph in the model and the sub-graph can be
different from iteration to iteration, meaning that some gra-
dients might be skipped in some iterations. However, as
gradient-to-bucket mapping is determined at the construc-
tion time, those absent gradients would leave some buckets
never seeing the final autograd hook and failing to mark the

bucket as ready. As a result, the backward pass could hang.
Fig. 3 (b) shows an example, where the parameter corre-
sponding to gradient g3 is skipped in one iteration, leading
to the absent of the ready signal for g3. To address this
problem, DDP traverses the autograd graph from the output
tensors of the forward pass to find all participating param-
eters. The readiness of those participating tensors is a suf-
ficient signal to conclude the completion of the backward
pass. Therefore, DDP can avoid waiting for the rest of the
parameter gradients by proactively marking them ready at
the end of the forward pass. Note that, this change does not
prevent us from developing non-intrusive APIs, because ap-
plication directly invokes the forward function on DDP and
hence DDP can easily insert this step in its member function.

Algorithm 1: DistributedDataParallel

Input: Process rank r, bucket size cap c, local model
net

1 Function constructor(net):
2 if r=0 then
3 broadcast net states to other processes

4 init buckets, allocate parameters to buckets in the
reverse order of net.parameters()

5 for p in net.parameters() do
6 acc ← p.grad accumulator
7 acc → add post hook(autograd hook)

8 Function forward(inp):
9 out = net(inp)

10 traverse autograd graph from out and mark
unused parameters as ready

11 return out

12 Function autograd hook(param index):
13 get bucket bi and bucket offset using param index
14 get parameter var using param index
15 view ← bi.narrow(offset, var.size())
16 view.copy (var.grad)
17 if all grads in bi are ready then
18 mark bi as ready

19 launch AllReduce on ready buckets in order
20 if all buckets are ready then
21 block waiting for all AllReduce ops

Algorithm 1 presents the pseudo-code of DDP. The con-
structor contains two major steps, broadcasting model states
and installing autograd hooks. DDP’s forward function is a
simple wrapper of the local model’s forward. It traverses
the autograd graph to mark unused parameters accordingly.
The autograd hook takes the internal parameter index as in-
put, which helps to find the parameter tensor and its belong-
ing bucket. It writes the local gradient to the correct offset in
the bucket and then launches the asynchronous AllReduce

operation. There is an additional finalizing step omitted in
the pseudo-code that waits for AllReduce operations and
writes the value back to gradients at the end of the back-
ward pass. Fig. 4 elucidates how DDP interacts with the local
model during the forward and backward passes.

The above solution works for most use cases. However, as
DDP always computes the average of all gradients and writes
them back to parameter .grad field, an optimizer cannot
distinguish whether a gradient has participated in the last
backward pass or not. Due to the decoupled design of DDP

and the optimizer, there is no side channel for DDP to allude

w1

addmm1

addmm2

mse_loss

loss

local model 1

gw1 b1gb1

w2 gw2 b2gb2

DDP1

Process 1

gw1

gb1

gw2

gb2bu
ck

et
1

bu
ck

et
2 b1

addmm1

addmm2

mse_loss

loss

local model 2

gb1 w1gw1

b2 gb2 w2gw2

Process 2

DDP2

gw1

gb1

gw2

gb2 bu
ck

et
1

bu
ck

et
2

allreduce1

allreduce2

Parameter Gradient Autograd Edge Copy Communication

Figure 4: Distributed Gradient Reduction

that information to the optimizer. Without this informa-
tion, the training process could suffer from regressions on
model accuracy, e.g., when the optimizer uses gradient ab-
sence information to skip updating momentum values. To
tackle this problem, DDP should only touch gradients that
are indeed involved in the backward pass. Nevertheless, this
information cannot be extracted from the local autograd
graph alone, because locally absent gradients might still be
involved in the forward/backward pass in a peer DDP process.
Therefore, DDP uses a bitmap to keep track of local param-
eter participants and launches one additional AllReduce to
collect globally unused parameters. Unfortunately, DDP can-
not coalesce this bitmap into other gradient AllReduce oper-
ations due to the potential mismatch in element types. Such
additional overhead only materializes when the application
explicitly tells DDP to look for unused parameters, and hence
the price is only paid when necessary.

3.2.4 Gradient Accumulation
One common technique to speed up distributed data par-

allel training is to reduce gradient synchronization frequen-
cies. Instead of launching AllReduce in every iteration, the
application can conduct n local training iterations before
synchronizing gradients globally. This is also helpful if the
input batch is too large to fit into a device, where the ap-
plication could split one input batch into multiple micro-
batches, run local forward and backward passes on every
micro-batch, and only launch gradient synchronization at
the boundaries of large batches. Theoretically, this should
produce the same results as if all data in the large batch
is processed in one shot, as gradients will simply be accu-
mulated to the same tensor. However, this conflicts with
the gradient reduction algorithm discussed in Section 3.2.3
to some degree. That algorithm would mark unused pa-
rameters as ready at the end of every forward pass, while
those unused parameters in one iteration still could partici-
pate in subsequent iterations. Moreover, DDP cannot distin-
guish whether the application plans to immediately invoke
optimizer.step() after backward or accumulate gradients
through multiple iterations. Therefore, we need to introduce
one additional interface (i.e., no sync) for this use case.

Under the hood, the implementation for no sync is very
simple. The context manager just toggles a flag on entering
and exiting the context, and the flag is consumed in the
forward function of DDP. In no sync mode, all DDP hooks
are disabled, and the first backward pass out of the context

will synchronize the accumulated gradients altogether. The
information of globally unused parameters also accumulates
in the bitmap, and serves when the next communication
takes place. Below is an example code snippet.

1 ddp = DistributedDataParallel(net)
2 with ddp.no_sync ():
3 for inp , exp in zip(inputs , expected_outputs):
4 # no synchronization , accumulate grads
5 loss_fn(ddp(inp), exp).backward ()
6 # synchronize grads
7 loss_fn(ddp(another_inp), another_exp).backward ()
8 opt.step()

3.3 Collective Communication
Distributed data parallel training uses a special communi-

cation pattern, where every participant provides an equally-
sized tensor and collects the global sum across all partici-
pants. This can certainly be implemented as a gather oper-
ator followed by local reductions on every participant using
point-to-point communication, but that would forfeit op-
portunities for performance optimizations [23]. DDP is built
on top of collective communication libraries, including three
options, NCCL [2], Gloo [1], and MPI [4]. 3 DDP takes the
APIs from the three libraries and wraps them into the same
ProcessGroup API. The name heralds that ProcessGroup

expects multiple processes to work collectively as a group.
All ProcessGroup instances construct at the same time by
using a rendezvous service, where the first arrival will block
waiting until the last instance joins. For NCCL backend, the
ProcessGroup maintains a dedicated set of CUDA streams
for communication, so that communications will not block
the computation in the default stream. As all communica-
tions are collective operations, subsequent operations on all
ProcessGroup instances must match in size and type and
follow the same order. Using the same ProcessGroup API
for all libraries allows us to experiment with different com-
munication algorithms with the same DDP implementation.
For example, PyTorch v1.5 provides a composite round-
robin ProcessGroup implementation, which takes a list of
ProcessGroup instances and dispatches collective communi-
cations to those ProcessGroup instances in a round-robin
manner. By using round-robin ProcessGroups, DDP can at-
tain higher bandwidth utilization if a single NCCL, Gloo, or
MPI ProcessGroup is unable to saturate the link capacity.

4. IMPLEMENTATION
The implementation of DDP has evolved several times in

the past few releases. This section focus on the current
status as of PyTorch v1.5.0. DDP implementation lives in
both Python and C++ files, with Python exposing the API
and composing non-performance-critical components, and
C++ serving the core gradient reduction algorithm. The
Python API calls into C++ core through Pybind11 [5].

4.1 Python Front-end
The DDP nn.module is implemented in distributed.py,

which contains user-facing components, including the con-
structor, the forward function, and the no sync context
manager. Besides the general ideas highlighted in Section 3,
there are several implementation details in the Python front-
end that shapes the behavior of DDP.
3Please refer to documents of the three libraries for their
design and implementation.

Configurable Knobs are exposed in the DDP constructor
API, including 1) process group to specify a process group
instance for DDP to run AllReduce, which helps to avoid
messing up with the default process group, 2) bucket cap mb

to control the AllReduce bucket size, where applications
should tune this knob to optimize training speed, and 3)
find unused parameters to toggle whether DDP should de-
tect unused parameters by traversing the autograd graph.

Model Device Affinity in the local model also governs
DDP’s behavior, especially if the model spans multiple de-
vices, which is common when the model is too large to fit
into a single device. For large models, applications can place
different layers of the model onto difference devices, and use
Tensor.to(device) API to move intermediate output from
one device to another. DDP also works with multi-device
models. As long as the device ids argument is None or
an empty list, DDP will inspect the model, perform sanity
checks and apply configurations accordingly. Then, it treats
the multi-device model as one entirety.

Model Buffers are necessary when layers need to keep
track of states like the running variance and the running
mean (e.g., BatchNorm). DDP supports model buffers by let-
ting the process with the rank 0 to take the authority. If the
model contains buffers, DDP will broadcast the buffer values
from rank 0 process to all other processes before starting
the forward pass on the local model. This behavior is also
compatible with the no sync mode. When no sync mode is
enabled, it sets a flag in the forward pass properly to indi-
cate whether it expects gradient reductions in the immediate
backward pass. If the communication takes place, DDP will
then broadcast buffers prior to the subsequent forward pass.

4.2 Core Gradient Reduction
Major development efforts are spent in gradient reduction

as it is the most performance-critical step in DDP. The imple-
mentation lives in reducer.cpp which consists of four main
components, namely, building parameter-to-bucket map, in-
stalling autograd hooks, launching bucket AllReduce, and
detecting globally unused parameters. This section expati-
ates on these four components.

Parameter-to-Bucket Mapping has a considerable im-
pact on DDP speed. In every backward pass, tensors are
copied from all parameter gradients to buckets, and aver-
aged gradients are copied back after AllReduce. To acceler-
ate copy operations, buckets are always created on the same
device as the parameters. If the model spans multiple de-
vices, DDP takes device affinity into consideration to make
sure that all parameters in the same bucket are on the same
device. The order of AllReduce also makes a difference, as
it dictates how much communication can overlap with com-
putation. DDP launches AllReduce in the reverse order of
model.parameters().

Autograd Hook is the entry point for DDP in the back-
ward pass. During construction, DDP loops over all param-
eters in the model, finds the gradient accumulator on every
parameter, and installs the same post-hook function to ev-
ery gradient accumulator. The gradient accumulator will
fire post hooks when the corresponding gradient is ready,
and DDP will figure out when an entire bucket is ready to
launch an AllReduce operation. However, as there is no
guarantee on the order of gradient readiness, DDP cannot se-
lectively pick parameters to install hooks. In the current
implementation, each bucket keeps a count of pending gra-

dients. Each post-hook function decrements the count, and
DDP marks a bucket as ready when that count reaches zero.
In the next forward pass, DDP replenishes the pending gra-
dient count for every bucket.

Bucket AllReduce is the main source of communication
overhead in DDP. On one hand, packing more gradients into
the same bucket would reduce the amortized system over-
head of communication. One the other hand, using a large
bucket size would result in longer lead time for reduction, as
each bucket needs to wait for more gradients. Hence, bucket
size is the key trade-off. By default, each bucket is 25MB in
size. Applications should measure their impact empirically
and set it to the optimal value for their use cases.

Globally Unused Parameters’ gradients should stay
intact during the forward and the backward passes. Detect-
ing unused parameters requires global information, as one
parameter could be absent in one DDP process during one it-
eration, but participates training in the same iteration in an-
other process. DDP maintains local unused parameter infor-
mation in a bitmap, and launches an additional AllReduce
to gather a global bitmap. As the bitmap is much smaller
than tensor sizes, instead of creating per-bucket bitmaps,
all parameters in the model share the same bitmap. The
bitmap lives on CPU to avoid launching dedicated CUDA
kernels for each update. However, some ProcessGroup back-
ends might not be able to run AllReduce on CPU ten-
sors. For example, ProcessGroupNCCL only supports CUDA
tensors. Moreover, as DDP should work with any custom
ProcessGroup backend, it cannot make assumptions that
all backends support CPU tensors. To address this prob-
lem, DDP maintains another bitmap on the same device as
the first model parameter, and invokes a non-blocking copy
to move the CPU bitmap to the device bitmap for collective
communications.

5. EVALUATION
This section presents the evaluation results of PyTorch

DDP using an exclusive 32 GPU cluster and a shared enti-
tlement. Fig. 5 shows the interconnection of the 8 GPUs
within the same server. In the exclusive cluster, the GPUs
are located on 4 servers, connected using Mellanox MT27700
ConnectX-4 100GB/s NIC. All 4 servers reside in the same
rack, and each server is equipped with 8 NVIDIA Tesla V100

0 1 2 3 4 5 6 7
GPUs

0

1

2

3

4

5

6

7

G
PU

s

NV2 NV1 NODE

Figure 5: GPU Topology

GPUs. We only use
the shared entitlement
when a set of exper-
iments require more than
32 GPUs. In the shared
entitlement, we submit
jobs to run on different
numbers of GPUs where
different jobs can run
on different machines,
and hence the hardware
and network connectiv-
ity can vary from job to
job. Although the dis-
parity in the test envi-
ronment can lead to dif-
ferent latency measures
even for the same code,
we pack the same set of

Figure 6: Per Iteration Latency Breakdown

experiments into the same job, so that the trend shown in
the same curve is still meaningful.

We measure DDP per iteration latency and scalability us-
ing two popular models, ResNet50 [20] and BERT [15], to
represent typical vision and NLP applications. Most ex-
periments use randomly generated synthetic inputs and la-
bels, which are sufficient as the purpose is to compare per
iteration latency instead of model accuracy. Experiments
compute losses using the CrossEntropyLoss function and
update parameters using the SGD optimizer. Configurations
for accuracy-related experiments will be explained in detail
close to their presentations.

5.1 Latency Breakdown
A typical training iteration contains three steps: forward

pass to compute loss, backward pass to compute gradients,
and optimizer step to update parameters. With DDP, the
backward pass involves local computation and AllReduce

communication. To demonstrate the effectiveness of over-
lapping computation with communication, Fig. 6 plots the
latency breakdown when using NCCL and Gloo backends for
ResNet50 and BERT models respectively. All experiments
are conducted using 32 GPUs across 4 machines. To visu-
ally compare the speedup on different model and backend
combinations, we normalize the total latency to 1 for all non-
overlapping cases. The results demonstrate that the back-
ward pass is the most time-consuming step with PyTorch
DDP training, as AllReduce communications (i.e., gradient
synchronization) are completed in this step. This observa-
tion justifies that the DDP backward pass deserves the most
efforts for improvements. Within the backward pass, the
communication step takes more than half of the total delay
and this is exacerbated with the increase of the model size.
Between these two backends, NCCL is considerably faster
than GLOO. The speedup is most effective when the com-
putation and communication take roughly the same amount
of time as they can overlap more. The overlapping approach
helps ResNet and BERT on NCCL attain 38.0% and 35.2%
speedup. With GLOO backend, the gain shrinks to 26.8%
and 21.5% respectively, as GLOO communication becomes
the dominating delay in the backward pass.

5.2 Bucket Size
To avoid launching an excessive number of AllReduce op-

erations, DDP organizes small gradients into larger buckets
and synchronizes each bucket using an AllReduce opera-
tion. With this design, bucket size is an important configu-
ration knob. DDP exposes this knob to applications through
bucket cap mb argument. No single bucket size can best
serve all applications. This value should be measured and
determined empirically. The default value of bucket cap mb

is 25MB, which is our best effort estimation based experi-
ences. The following experiments also confirm this is a rea-
sonable choice for ResNet50 and BERT. This section com-
pares per iteration latency across different bucket sizes using
16 GPUs on two machines. Zero bucket size means each gra-
dient will be communicated on its own as soon as it is ready.
This serves as a baseline on one extreme of the bucket size
spectrum. The other extreme is communication all gradi-
ents in one short, which is skipped as results in Fig. 7 and
Fig. 8 clearly show the best option for both ResNet50 and
BERT is somewhere in the middle.

Fig. 7 (a) uses box-whisker to illustrate how bucket size
affects per iteration latency on ResNet50 with NCCL back-
end. The x-axis is the bucket size in MBs, and Y-axis per
iteration latency in seconds. The outliers are the tiny delay
spikes at 100 iteration boundaries caused by DDP instance
re-construction and input data regeneration. Other than
that, delays of most iterations concentrate in a very nar-
row time range, which also agrees with the results shown
in Fig. 6 (a). The results show that the highest speed is
achieved between 10MB and 25MB bucket sizes. Fig. 7 (b)
presents the same measurements for Gloo backend. The re-
sults are different from NCCL backend in two ways, 1) per
iteration latency falls into a large range, 2) the 5MB bucket
size attains higher speed compared to 10MB and 25MB. The
first difference matches with Fig. 6 (b). To understand the
second difference, let us revisit Fig. 2 (b) on Gloo AllReduce

latency across different tensor sizes. It’s clear that the total
AllReduce time fluctuates around the same level when the
bucket size is larger than 512KB. Therefore, larger bucket
sizes beyond 512KB with Gloo backend would only mean
longer waiting time for gradients, which leads to longer per
iteration latency. Fig. 7 (c) and (d) show the measurements
for BERT model. As BERT model contains 15X more pa-
rameters compared to ResNet50, intuitively, it should ben-
efit from larger buckets as larger communication overheads
would dwarf the waiting time for the first bucket. The re-
sults verified the intuition with NCCL backend, where 50MB
bucket size leads to the best performance. However, with
Gloo backend, 5MB bucket size still wins with the lowest
per iteration latency.

Fig. 8 presents the results of the same set of experiments
but on 32 GPUs. In this case, the outliers span a larger
range, which is not surprising as synchronizations usually
take longer with more participants and the impact of stran-
gler is more prominent. Fig. 8 (a) and (b) both suggest
that 0MB bucket size leads to obviously longer per itera-
tion latency on 32 GPUs compared to 16 GPUs, as per-
gradient reductions on a larger cluster are expected to be
slower. However, when bucket size is set to above 5MB,
scaling from 16 GPUs to 32 GPUs does not lead to a notice-
able speed regression. This is probably because although
individual AllReduce operations is expected to be slower,
asynchronous execution and parallelism could help to hide
the overall delay.

5.3 Scalability
To understand the scalability of DDP, we measure per iter-

ation training latency of ResNet50 and BERT using NCCL
and Gloo backend on up to 256 GPUs in the shared enti-
tlement. Results are presented in Fig. 9. The X-axis is the
number of GPUs, and Y-axis the latency. Figure 9 (a) shows
that the per iteration latency steadily increases as it scales

0 5 10 25 50
Bucket Size (MB)

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Pe

r I
te

ra
tio

n
La

te
nc

y
(S

ec
)

(a) ResNet50 on NCCL

0 5 10 25 50
Bucket Size (MB)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(b) ResNet50 on Gloo

0 5 10 25 50 100 200
Bucket Size (MB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(c) BERT on NCCL

0 5 10 25 50 100 200
Bucket Size (MB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(d) BERT on Gloo

Figure 7: Per Iteration Latency vs Bucket Size on 16 GPUs

0 5 10 25 50
Bucket Size (MB)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(a) ResNet50 on NCCL

0 5 10 25 50
Bucket Size (MB)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(b) ResNet50 on Gloo

0 5 10 25 50 100 200
Bucket Size (MB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(c) BERT on NCCL

0 5 10 25 50 100 200
Bucket Size (MB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(d) BERT on Gloo

Figure 8: Per Iteration Latency vs Bucket Size on 32 GPUs

out. Using 256 GPUs leads to 100% slow down in each it-
eration compared to local training, meaning that the real
scaling factor is 256 × 50% = 128. With the BERT model,
the per-iteration latency significantly increases due to the
larger model size. Another observation is that the 16-GPU
case suffers a longer per-iteration delay compared to the 32-
GPU case in Figure 9 (c). We suspect this is because either
the 16-GPU experiments were on a slow or congested link
or there are other workflows in the shared entitlement com-
peting for resources with our job. Fig. 9 (b) and (d) show
the results for Gloo backend and the per-iteration slowdown
is about 3X for ResNet and 6X for BERT when using 256
GPUs. The deteriorated training speed with larger model
sizes indicates that the network is the bottleneck resource
when using Gloo backend in this experiment.

In general, scaling out to more GPUs slows down indi-
vidual iterations. One option to mitigate the overhead is
skipping gradient synchronizations, i.e., perform gradient
reduction every n iterations. This approach helps to con-
siderably reduce the amortized latency. Fig. 10 depicts the
average per iteration latency for conducting gradient reduc-
tion every 1, 2, 4, and 8 iterations. To visually compare
the effectiveness of this method, we consolidated different
skipping configurations for the same model and backend
combination into the same figure. ResNet50 on NCCL and
Gloo sees 38% and 57% speed up with 256 GPUs when con-
ducting gradient sync every 8 iterations. There is a sudden
jump in delay with NCCL backend when scaling from 128
to 256 and this occurs to all experiments shown in this fig-
ure. We believe this is caused by slow or congested links
among some of those 256 nodes which are not included in
the 128-GPU experiments. Besides the per iteration latency,
it’s also crucial to measure the convergence speed to ver-

ify if the acceleration might be erased by convergence slow-
down. The experiments use MNIST [25] dataset to train the
ResNet. The learning rate is set to 0.02 and the batch size
is 8. Results are plotted in Fig. 11 (a), which only contains
the measurements for NCCL backend as the communica-
tion layer does not change the convergence speed. X-axis is
the number of iterations and Y-axis the loss. Please note
that the goal of this experiment is not developing the best
model for MNIST, instead, it only aims to show the im-
pact of skipping synchronization on the model convergence.
The raw loss data oscillate severely, which are presented by
the tiny dots. Directly connecting them into a line would
result in the last curve covering all previous drawn ones,
making them less visible. Therefore, we apply an order 3
low pass filter by using filtfilt from SciPy [8] and plot
the smoothed loss curve. The figure confirms that using
no sync in this case only leads to negligible exacerbation to
the convergence speed. However, we must emphasize that
the impact of no sync could depend on the configuration.
Fig. 11 (b) shows similar measurements by replacing batch
size to 256 and learning rate to 0.06. As highlighted by the
red box in the right bottom corner, no sync hurts the fi-
nal training loss. It is because large batch size and no sync

cause more gradients to be accumulated between consecu-
tive communications and optimizer steps, which implicitly
requires using a smaller learning rate. In summary, when
skipping synchronizations properly, DDP attains near linear
scalability with negligible accuracy penalty.

5.4 Round-Robin Process Group
Another technique to speed up training is to use multiple

process groups to work around subtle intrinsic concurrency
limitations in process group backend implementations. The

1 2 4 8 16 32 64 128 256
Number of GPUs

0.1

0.2

0.3

0.4

0.5

0.6
Pe

r I
te

ra
tio

n
La

te
nc

y
(S

ec
)

(a) ResNet50 on NCCL

1 2 4 8 16 32 64 128 256
Number of GPUs

0.1

0.2

0.3

0.4

0.5

0.6

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(b) ResNet50 on Gloo

1 2 4 8 16 32 64 128 256
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(c) BERT on NCCL

1 2 4 8 16 32 64 128 256
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
r I

te
ra

tio
n

La
te

nc
y

(S
ec

)

(d) BERT on Gloo

Figure 9: Scalability

1 2 4 8 16 32 64 128 256
Number of GPUs

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

A
ve

ra
ge

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) nccl

no_sync_2
no_sync_4
no_sync_8

(a) ResNet50 on NCCL

1 2 4 8 16 32 64 128 256
Number of GPUs

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) gloo

no_sync_2
no_sync_4
no_sync_8

(b) ResNet50 on Gloo

Figure 10: Skip Gradient Synchronization

0 50 100 150 200 250 300 350
Number Iterations

1.6

1.8

2.0

2.2

Lo
ss

nccl
no_sync_2
no_sync_4
no_sync_8

(a) Batch Size = 8

0 50 100 150 200 250 300 350
Number Iterations

1.6

1.8

2.0

2.2

Lo
ss

nccl
no_sync_2
no_sync_4
no_sync_8

(b) Batch Size = 256

Figure 11: Accuracy with Skipping Synchronization

1 2 4 8 16 24 32
Number of GPUs

0.08

0.09

0.10

0.11

0.12

0.13

0.14

M
ed

iu
m

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) rr1

rr3
rr5

(a) ResNet50 on NCCL

1 2 4 8 16 24 32
Number of GPUs

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
ed

iu
m

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) rr1

rr3
rr5

(b) ResNet50 on Gloo

1 2 4 8 16 24 32
Number of GPUs

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ed

iu
m

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) rr1

rr3
rr5

(c) BERT on NCCL

1 2 4 8 16 24 32
Number of GPUs

0.2

0.4

0.6

0.8

1.0

1.2

M
ed

iu
m

 P
er

 It
er

at
io

n
La

te
nc

y
(S

ec
) rr1

rr3
rr5

(d) BERT on Gloo

Figure 12: Round-Robin Process Group

concurrency limitations could come from NCCL streams or
Gloo threads, depending on the type of the backend, which
might prevent one process group instance to fully utilize
all link bandwidth. The PyTorch distributed package sup-
ports composing a Round-Robin process group with multi-
ple NCCL or Gloo process groups, which dispatches collec-
tive communications to different process group instances in
Robin-Robin order. Fig. 12 plots the per iteration latency
of Round-Robin process group using 1, 3, and 5 NCCL or
Gloo process groups, where rrx stands for Round-Robin
with x process group instances. ResNet50 on NCCL back-
end sees negligible differences with different amounts of pro-
cess groups, meaning that for relatively small models like
ResNet50, bandwidth is not the bottleneck resource. No-
ticeable difference can be observed in ResNet50 on Gloo,
where rr3 consistently outperforms rr1. The most promi-
nent acceleration occurs in BERT model with NCCL back-
end, where rr3 achieves 33% speedup compared to rr1 on
16 GPUs, revealing that one NCCL group is incompetent to
saturate the link capacity.

6. DISCUSSION
This section discusses lessons learned from our experi-

ments and past experiences. We then present several ideas
for future improvements.

6.1 Lessons Learned
Distributed data parallel training is a conceptually simple

but practically subtle framework. There are various tech-
niques to improve the training speed, creating a complex
configuration space. Based on our observations, there is
no single configuration that would work for all use cases,
as it would highly depend on the model size, model struc-
ture, network link bandwidth, etc. However, on individual
configuration dimensions, we summarized intuitions to help
application developers to quickly navigate to a small range
which likely contains the optimal solution for a given use
case. The specific value of the configuration needs to be de-
termined using empirical measurements for every different
deployment.

• Communication Backend: NCCL is considerably
faster than Gloo in most use cases. When available,
applications should seek to use NCCL as the primary
collective communication backend.

• Bucket Size: Both excessively small or large bucket
sizes are detrimental to communication performance.
The optimal value lives in between and depends on
the type of communication backend employed. The
optimal bucket sizes are likely to increase with the size
of the model in a sub-linear manner.

• Resource Allocation: There is a significant slow-
down with NCCL backend when scaling models across
machine boundaries, if the bandwidth across machines
is considerably lower than that between same-machine
GPUs. In such cases, it is recommended to keep the
DDP group within the same machine. If the train-
ing requires larger scale, developers can explore en-
abling no sync mode if it attains acceptable conver-
gence speed.

6.2 Future Improvements
While we implement and maintain the DDP package, sev-

eral ideas for improvements popped up. This section dis-
cusses the basic ideas behind those improvements.

6.2.1 Gradient Order Prediction
Although DDP cannot deterministically detect the back-

ward computation order on all parameters at construction
time, the order usually does not change that often in prac-
tice. One viable solution is to trace the backward order using
autograd hooks and update parameter to bucket mapping
accordingly. As bucket re-allocation will introduce notice-
able overhead, it should be conducted infrequently. Given
the existing complexities in DDP, tracing overhead should be
negligible. Nevertheless, if there are disparities among trac-
ing results from different iterations, additional complexities
will be necessary to reach a consensus.

6.2.2 Layer Dropping
One technique to accelerate training and avoid overfit-

ting is to randomly drop layers during the forward pass [17].
This works well with local training. As every forward pass
would build a new autograd graph, those skipped layers will
not participate in the backward pass either. This idea also
works with DDP, because parameters in skipped layers can be
marked as ready in the forward pass and DDP will not wait for
their autograd hooks during the backward pass. Although
DDP would produce the correct result, this technique alone
is inadequate to accelerate distributed data parallel training
the same way as local training due to the fixed parameter-
to-bucket mapping. As AllReduce uses a bucket as the min-
imum granularity, it cannot judiciously react to vacancies in
buckets (i.e., skipped layers or parameters). Consequently,
regardless of how the forward pass skips layers, there is al-
ways the same amount of data to be communicated across
the wire during the backward pass. Besides, DDP cannot af-
ford the luxury to adjust all buckets to cooperate with ran-
domly skipped layers, as that would result in unacceptable
memory allocation overhead. To tackle this problem, one so-
lution is to keep bucket buffers intact but modify parameter-
to-bucket mappings accordingly. Another option is to per-
form layer skips at the bucket level, i.e., DDP can map layers

instead of parameters to buckets and all processes skip the
same bucket in the same iteration. Both options require
extra coordination across all DDP processes, which can be
implemented by using the same random seed or having an
authority process to broadcast the plan.

6.2.3 Gradient Compression
Another potential improvement for DDP is to reduce the

volume of data for communication by compressing gradients.
The absolute value of gradients are usually small, which
might not require float32 or float64 types. Current DDP

implementation always uses the parameter type as the gra-
dient type that can become an overkill especially when the
model is approaching convergence. In this case, DDP would
benefit from adaptive compression levels by only communi-
cating gradients with the necessary precision. Some recent
research work [34] even proposes more aggressive compres-
sion schemes, where by trading a tiny amount of model ac-
curacy, applications can significantly accelerate distributed
training by communicating just 1 bit for each gradient.

7. RELATED WORK
Distributed training algorithms can be categorized into

different types from different perspectives. Below are three
popular categorizations.

• Synchronous update vs Asynchronous update: With
the former, all model replicas can use AllReduce to col-
lectively communicate gradients or parameters, while
the asynchronous scheme employs P2P communication
to update gradients or parameters independently.

• Cross-iteration vs Intra-iteration: Cross-iteration par-
allelism (e.g., pipeline parallelism) allows the lifetime
of multiple iterations to overlap with each other, while
intra-iteration scheme focuses on parallelizing training
within one iteration.

• Data parallel vs Model parallel: Data parallel train-
ing distributes input data to multiple model replicas,
while model parallelism divides the model into smaller
pieces, which is especially helpful when the model is
too large to fit in one device or machine.

Table 1 summarizes some recent distributed training so-
lutions by marking which scheme they can support. Be-
sides advances in training schemes, prior work has also ex-
plored different communication algorithms, including tree-
based AllReduce [23], heterogeneity-aware interconnection
structure [39], and AllReduce decomposition [14]. As this
paper focuses on DDP, the remainder of this section only elab-
orates and compares closely related techniques, i.e., Syn-
chronous, Intra-iteration, and Data parallel training schemes.

The techniques presented in this paper were first imple-
mented and released in PyTorch v1.1. Similar computation-
communication overlap techniques are also introduced in
TensorFlow v2.2 as the Multi Worker Mirrored Strategy [10].
This technique is researched in academia as well. Gradi-
entFlow [37] combines bucketing AllReduce with skipping
parameter synchronizations. Compared to PyTorch DDP,
instead of skipping the entire synchronization step in one
iteration, GradientFlow selectively communicates a subset
of gradients. Although this strategy helps to reduce com-
munication overhead for gradients, it requires an additional

communication phase to attain consensus on which gradi-
ents to synchronize. As a result, the overhead incurred to
acquire consensus might overshadow the speedup achieved
in gradient synchronizations, especially for small models or
large network round-trip delays.

Another approach to speed up distributed training is pre-
empting and prioritizing communications based on the or-
der of downstream computations. Jayarajan et al. [22] pro-
posed to prioritize gradient synchronizations and parameter
updates based on the forward order instead of the back-
ward order, meaning that gradient buckets containing the
initial layers should receive higher priorities than those in
the final layers. Communications should still start from fi-
nal layer gradients, as they will become ready earlier, but
higher priority gradients (i.e., in initial layers) can preempt
lower priority ones. This design allows the forward pass in
the next iteration to start sooner, even before finishing gradi-
ents communications in the previous iteration, creating more
opportunities to overlap computations and communications.
ByteScheduler [31] explored scheduling communications for
distributed data parallel training as well. However, instead
of binding with a single framework, ByteScheduler works for
multiple frameworks by inserting a common core scheduler
between framework APIs and framework engines and uses
per-engine plugins to intercept communication invocations.
To integrate with PyTorch, ByteScheduler builds on top of
Horovod [35] which launches communication in the opti-
mizer. One downside of this approach is that, there is a hard
barrier between the backward pass and the optimizer step.
As a result, communication can only overlap with the next
forward pass instead of the current backward pass. With dy-
namic graphs, the next iteration might touch a different set
of parameters, which would invalidate the schedule derived
from the previous iteration. PACE [12] computes the op-
timal communication schedule and implements preemption
by segmenting primitive AllReduce operations into smaller
pieces. Although segmenting can indeed mimic preemption,
it will on the other hand hurt the total communication time
as we have seen in Fig. 2. A more efficient approach would
be to natively support prioritization in the communication
libraries (e.g., NCCL and Gloo).

The mixture of different parallelism scheme fosters even
more powerful training paradigms. Mesh-TensorFlow [36]
combines data parallelism with model parallelism. It verti-
cally divides some layers by dimensions and replicating other
layers where the given dimension is absent. ZeRO [32] also
combines data parallelism with model parallelism, but with
minimum model replication to support fast training on su-
per large models. The authors observed that main memory
consumption contributors are input data, model parame-
ters, gradients, optimizer states, and activations. Splitting
input data is trivial. However, model parameters and ac-
tivations are compulsory ingredients for backward passes.
ZeRO addressed this problem by partitioning parameters,
gradients, and optimizer states on each DDP instance. Pa-
rameters are broadcast from the owner DDP instance to all
others when necessary. Activations are recomputed during
the backward pass. Compared to PyTorch DDP, ZeRO can
scale to much larger models as each process only needs to
maintain a small partition of the model. The high scalabil-
ity is achieved by sacrificing the training speed, as the ad-
ditional re-computation, broadcast, and gather would intro-

Table 1: Distributed Training Solutions: Six schemes
are S

¯
ynchronous-Update vs A

¯
synchronous-Update, C

¯
ross-

Iteration vs I
¯
ntra-Iteration, D

¯
ata-Parallel vs M

¯
odel-Parallel

Scheme S A C I D M
PT DDP [9]

√ √ √

PT RPC [6]
√ √ √ √ √

TF Mirrored Worker [10]
√ √ √

TF ParameterServer [11]
√ √ √ √

Mesh TensorFlow [36]
√ √ √ √

GPipe [21]
√ √ √

Horovod [35]
√ √ √

GradientFlow [37]
√ √ √

SlowMo [40]
√ √ √

PipeDream [29]
√ √ √ √ √

ZeRO [32]
√ √ √ √

Parallax [24]
√ √ √ √ √

ByteScheduler [31]
√ √ √ √

TicTac [19]
√ √ √ √

PACE [12]
√ √ √

duce considerable overhead. Hence, applications can choose
which techniques to use based on the size of the given model
and available resources. PipeDream [29] employs a different
approach where the model stack is decomposed into multiple
stages, where data parallelism is applied within one stage
and pipeline with model parallelisms govern the workload
across stages. One subtle detail is that to attain high train-
ing speed, PipeDream slightly sacrifices accuracy by using
the latest gradients from multiple concurrent passes. Al-
though the gradient might not be derived from the current
parameter states, the authors show that this mismatch is tol-
erable in practice. Parallax [24] explored a hybrid structure
that combines parameter-server [27] and collective commu-
nications. Models are partitioned based on sparsity, where
dense parameters are communicated using AllReduce and
sparse tensors are placed to parameter servers. This design
avoids densifying sparse tensors and communicating empty
values, which is especially helpful for NLP models.

8. CONCLUSION
This paper explained the design and implementation of

the distributed data parallel module in PyTorch v1.5, and
conducted performance evaluations on NCCL and Gloo back-
end using ResNet50 and BERT models. DDP accelerates
training by aggregating gradients into buckets for communi-
cation, overlapping communication with computation, and
skipping synchronizations. We also highlighted real-world
caveats in gradient synchronization which are important for
broad adoption. Results showed that DDP with NCCL back-
end can achieve near-linear scalability on 256 GPUs when
configured properly. The measurements also revealed that
the backward pass in DDP is the most expensive step in train-
ing and requires efforts from both framework developers to
enable optimization algorithms and application developers
to empirically configure the knobs. Based on our obser-
vations, we shared lessons learned from serving a variety
of application, discussed potential future improvements for
distributed data parallel training, and enthusiastically en-
courage open source community to experiment with more
novel ideas.

9. REFERENCES
[1] Gloo: a collective communications library.

https://github.com/facebookincubator/gloo, 2019.

[2] NVIDIA Collective Communications Library (NCCL).
https://developer.nvidia.com/nccl, 2019.

[3] NVLINK AND NVSWITCH: The Building Blocks of
Advanced Multi-GPU Communication. https:
//www.nvidia.com/en-us/data-center/nvlink/,
2019.

[4] Open MPI: A High Performance Message Passing
Library. https://www.open-mpi.org/, 2019.

[5] Pybind11: Seamless operability between C++11 and
Python. https://pybind11.readthedocs.io/, 2019.

[6] PyTorch Distributed RPC Framework.
https://pytorch.org/docs/master/rpc.html, 2019.

[7] PyTorch Module forward Function.
https://pytorch.org/docs/stable/nn.html#torch.

nn.Module.forward, 2019.

[8] SciPy: open-source software for mathematics, science,
and engineering. https://docs.scipy.org/, 2019.

[9] PyTorch DistributedDataParallel.
https://pytorch.org/docs/stable/nn.html#torch.

nn.parallel.DistributedDataParallel, 2020.

[10] TensorFlow Distributed Training
MultiWorkerMirroredStrategy.
https://www.tensorflow.org/guide/distributed_

training#multiworkermirroredstrategy, 2020.

[11] TensorFlow Distributed Training
ParameterServerStrategy.
https://www.tensorflow.org/guide/distributed_

training#parameterserverstrategy, 2020.

[12] Y. Bao, Y. Peng, Y. Chen, and C. Wu. Preemptive
all-reduce scheduling for expediting distributed dnn
training. In IEEE INFOCOM, 2020.

[13] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[14] M. Cho, U. Finkler, M. Serrano, D. Kung, and
H. Hunter. Blueconnect: Decomposing all-reduce for
deep learning on heterogeneous network hierarchy.
IBM Journal of Research and Development, 63(6):1–1,
2019.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and
Communications Security, pages 1285–1298, 2017.

[17] A. Fan, E. Grave, and A. Joulin. Reducing
transformer depth on demand with structured
dropout. arXiv preprint arXiv:1909.11556, 2019.

[18] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang.
Deep learning for real-time atari game play using
offline monte-carlo tree search planning. In Advances
in neural information processing systems, pages
3338–3346, 2014.

[19] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell.
Tictac: Accelerating distributed deep learning with
communication scheduling. arXiv preprint
arXiv:1803.03288, 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[21] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen,
M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural
Information Processing Systems, pages 103–112, 2019.

[22] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and
G. Pekhimenko. Priority-based parameter propagation
for distributed dnn training. In Proceedings of Machine
Learning and Systems 2019, pages 132–145, 2019.

[23] S. Jeaugey. Massively Scale Your Deep Learning
Training with NCCL 2.4.
https://devblogs.nvidia.com/

massively-scale-deep-learning-training-nccl-2-4/,
February 2019.

[24] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha,
S. Lee, J. S. Jeong, and B.-G. Chun. Parallax:
Sparsity-aware data parallel training of deep neural
networks. In Proceedings of the Fourteenth EuroSys
Conference 2019, pages 1–15, 2019.

[25] Y. LeCun, C. Cortes, and C. Burges. The MNIST
Database. http://yann.lecun.com/exdb/mnist/,
1999.

[26] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski.
A theoretical framework for back-propagation. In
Proceedings of the 1988 connectionist models summer
school, volume 1, pages 21–28. CMU, Pittsburgh, Pa:
Morgan Kaufmann, 1988.

[27] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 14), pages 583–598, 2014.

[28] H. Mao, M. Cheung, and J. She. Deepart: Learning
joint representations of visual arts. In Proceedings of
the 25th ACM international conference on Multimedia,
pages 1183–1191, 2017.

[29] D. Narayanan, A. Harlap, A. Phanishayee,
V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.
Gibbons, and M. Zaharia. Pipedream: generalized
pipeline parallelism for dnn training. In Proceedings of
the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

[31] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan,
C. Wu, and C. Guo. A generic communication

https://github.com/facebookincubator/gloo
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.open-mpi.org/
https://pybind11.readthedocs.io/
https://pytorch.org/docs/master/rpc.html
https://pytorch.org/docs/stable/nn.html#torch.nn.Module.forward
https://pytorch.org/docs/stable/nn.html#torch.nn.Module.forward
https://docs.scipy.org/
https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel
https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#parameterserverstrategy
https://www.tensorflow.org/guide/distributed_training#parameterserverstrategy
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
http://yann.lecun.com/exdb/mnist/

scheduler for distributed dnn training acceleration. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 16–29, 2019.

[32] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He.
Zero: Memory optimization towards training a trillion
parameter models. arXiv preprint arXiv:1910.02054,
2019.

[33] B. Ramsundar, P. Eastman, P. Walters, and
V. Pande. Deep learning for the life sciences: applying
deep learning to genomics, microscopy, drug discovery,
and more. ” O’Reilly Media, Inc.”, 2019.

[34] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit
stochastic gradient descent and its application to
data-parallel distributed training of speech dnns. In
Fifteenth Annual Conference of the International
Speech Communication Association, 2014.

[35] A. Sergeev and M. D. Balso. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

[36] N. Shazeer, Y. Cheng, N. Parmar, D. Tran,
A. Vaswani, P. Koanantakool, P. Hawkins, H. Lee,

M. Hong, C. Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural
Information Processing Systems, pages 10414–10423,
2018.

[37] P. Sun, Y. Wen, R. Han, W. Feng, and S. Yan.
Gradientflow: Optimizing network performance for
large-scale distributed dnn training. IEEE
Transactions on Big Data, 2019.

[38] A. Van den Oord, S. Dieleman, and B. Schrauwen.
Deep content-based music recommendation. In
Advances in neural information processing systems,
pages 2643–2651, 2013.

[39] G. Wang, S. Venkataraman, A. Phanishayee,
J. Thelin, N. Devanur, and I. Stoica. Blink: Fast and
generic collectives for distributed ml. arXiv preprint
arXiv:1910.04940, 2019.

[40] J. Wang, V. Tantia, N. Ballas, and M. Rabbat.
Slowmo: Improving communication-efficient
distributed sgd with slow momentum. arXiv preprint
arXiv:1910.00643, 2019.

	Introduction
	Background
	PyTorch
	Data Parallelism
	AllReduce

	System Design
	API
	Gradient Reduction
	A Naive Solution
	Gradient Bucketing
	Overlap Computation with Communication
	Gradient Accumulation

	Collective Communication

	Implementation
	Python Front-end
	Core Gradient Reduction

	Evaluation
	Latency Breakdown
	Bucket Size
	Scalability
	Round-Robin Process Group

	Discussion
	Lessons Learned
	Future Improvements
	Gradient Order Prediction
	Layer Dropping
	Gradient Compression

	Related Work
	Conclusion
	References

