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Abstract – Picking the right cloud configuration for
recurring big data analytics jobs running in clouds is
hard, because there can be tens of possible VM instance
types and even more cluster sizes to pick from. Choos-
ing poorly can significantly degrade performance and in-
crease the cost to run a job by 2-3x on average, and as
much as 12x in the worst-case. However, it is challeng-
ing to automatically identify the best configuration for a
broad spectrum of applications and cloud configurations
with low search cost. CherryPick is a system that lever-
ages Bayesian Optimization to build performance mod-
els for various applications, and the models are just ac-
curate enough to distinguish the best or close-to-the-best
configuration from the rest with only a few test runs. Our
experiments on five analytic applications in AWS EC2
show that CherryPick has a 45-90% chance to find opti-
mal configurations, otherwise near-optimal, saving up to
75% search cost compared to existing solutions.

1 Introduction
Big data analytics running on clouds are growing rapidly
and have become critical for almost every industry. To
support a wide variety of use cases, a number of evolving
techniques are used for data processing, such as Map-
Reduce, SQL-like languages, Deep Learning, and in-
memory analytics. The execution environments of such
big data analytic applications are structurally similar: a
cluster of virtual machines (VMs). However, since dif-
ferent analytic jobs have diverse behaviors and resource
requirements (CPU, memory, disk, network), their cloud
configurations – the types of VM instances and the num-
bers of VMs – cannot simply be unified.

Choosing the right cloud configuration for an appli-
cation is essential to service quality and commercial
competitiveness. For instance, a bad cloud configu-
ration can result in up to 12 times more cost for the
same performance target. The saving from a proper
cloud configuration is even more significant for recur-
ring jobs [10, 17] in which similar workloads are exe-
cuted repeatedly. Nonetheless, selecting the best cloud
configuration, e.g., the cheapest or the fastest, is difficult
due to the complexity of simultaneously achieving high
accuracy, low overhead, and adaptivity for different ap-
plications and workloads.

Accuracy The running time and cost of an application
have complex relations to the resources of the cloud in-
stances, the input workload, internal workflows, and con-
figuration of the application. It is difficult to use straight-
forward methods to model such relations. Moreover,
cloud dynamics such as network congestions and strag-
glers introduce substantial noise [23, 39].

Overhead Brute-force search for the best cloud configu-
ration is expensive. Developers for analytic applications
often face a wide range of cloud configuration choices.
For example, Amazon EC2 and Microsoft Azure offer
over 40 VM instance types with a variety of CPU, mem-
ory, disk, and network options. Google provides 18 types
and also allows customizing VMs’ memory and the num-
ber of CPU cores [2]. Additionally, developers also need
to choose the right cluster size.

Adaptivity Big data applications have diverse internal
architectures and dependencies within their data process-
ing pipelines. Manually learning to build the internal
structures of individual applications’ performance model
is not scalable.

Existing solutions do not fully address all of the pre-
ceding challenges. For example, Ernest [37] trains a per-
formance model for machine learning applications with
a small number of samples but since its performance
model is tightly bound to the particular structure of ma-
chine learning jobs, it does not work well for applications
such as SQL queries (poor adaptivity). Further, Ernest
can only select VM sizes within a given instance family,
and performance models need to be retrained for each
instance family.

In this paper, we present CherryPick—a system that
unearths the optimal or near-optimal cloud configura-
tions that minimize cloud usage cost, guarantee appli-
cation performance and limit the search overhead for re-
curring big data analytic jobs. Each configuration is rep-
resented as the number of VMs, CPU count, CPU speed
per core, RAM per core, disk count, disk speed, and net-
work capacity of the VM.

The key idea of CherryPick is to build a performance
model that is just accurate enough to allow us to distin-
guish near-optimal configurations from the rest. Toler-
ating the inaccuracy of the model enables us to achieve
both low overhead and adaptivity: only a few samples
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Figure 1: Regression and TeraSort
with varying RAM size (64 cores)
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Figure 2: Regression and TeraSort
cost with varying cluster size (M4)

�����
�����
�����
�����

�� �� �� �� �� �� �� ���
��
��
��
��
�
��
��
��
�

����������������������������

�������������������
���������������������

����������������

Figure 3: Regression and TeraSort
cost with varying VM type (32 cores)

are needed and there is no need to embed application-
specific insights into the modeling.

CherryPick leverages Bayesian Optimization
(BO) [13, 28, 33], a method for optimizing black-
box functions. Since it is non-parametric, it does not
have any pre-defined format for the performance model.
BO estimates a confidence interval (the range that the
actual value should fall in with high probability) of
the cost and running time under each candidate cloud
configuration. The confidence interval is improved (nar-
rowed) as more samples become available. CherryPick
can judge which cloud configuration should be sampled
next to best reduce the current uncertainty in modeling
and get closer to go the optimal. CherryPick uses the
confidence interval to decide when to stop the search.
Section 3 provides more details on how BO works and
why we chose BO out of other alternatives.

To integrate BO in CherryPick we needed to perform
several customizations (Section 3.5): i) selecting features
of cloud configurations to minimize the search steps; ii)
handling noise in the sampled data caused by cloud inter-
nal dynamics; iii) selecting initial samples; and iv) defin-
ing the stopping criteria.

We evaluate CherryPick on five popular analytical
jobs with 66 configurations on Amazon EC2. CherryP-
ick has a high chance (45%-90%) to pick the optimal
configuration and otherwise can find a near-optimal so-
lution (within 5% at the median), while alternative solu-
tions such as coordinate descent and random search can
take up to 75% more running time and 45% more search
cost. We also compare CherryPick with Ernest [37] and
show how CherryPick can improve search time by 90%
and search cost by 75% for SQL queries.

2 Background and Motivation
In this section, we show the benefits and challenges of
choosing the best cloud configurations. We also present
two strawman solutions to solve this problem.

2.1 Benefits

A good cloud configuration can reduce the cost of ana-
lytic jobs by a large amount. Table 1 shows the arithmetic
mean and maximum running cost of configurations com-
pared to the configuration with minimum running cost

Application Avg/min Max/min
TPC-DS 3.4 9.6
TPC-H 2.9 12

Regression (SparkML) 2.6 5.2
TeraSort 1.6 3.0

Table 1: Comparing the maximum, average, and minimum
cost of configurations for various applications.

for four applications across 66 candidate configurations.
The details of these applications and their cloud config-
urations are described in Section 5. For example, for the
big data benchmark, TPC-DS, the average configuration
costs 3.4 times compared to the configuration with min-
imum cost; if users happen to choose the worst configu-
ration, they would spend 9.6 times more.

Picking a good cloud configuration is even more im-
portant for recurring jobs where similar workloads are
executed repeatedly, e.g. daily log parsing. Recent stud-
ies report that up to 40% of analytics jobs are recur-
ring [10, 17]. Our approach only works for repeating
jobs, where the cost of a configuration search can be
amortized across many subsequent runs.

2.2 Challenges

There are several challenges for picking the best cloud
configurations for big data analytics jobs.

Complex performance model: The running time is af-
fected by the amount of resources in the cloud configura-
tion in a non-linear way. For instance, as shown in Fig-
ure 1, a regression job on SparkML (with fixed number
of CPU cores) sees a diminishing return of running time
at 256GB RAM. This is because the job does not benefit
from more RAM beyond what it needs. Therefore, the
running time only sees marginal improvements.

In addition, performance under a cloud configuration
is not deterministic. In cloud environments, which is
shared among many tenants, stragglers can happen. We
measured the running time of TeraSort-30GB on 22 dif-
ferent cloud configurations on AWS EC2 five times. We
then computed the coefficient of variation (CV) of the
five runs. Our results show that the median of the CV
is about 10% and the 90 percentile is above 20%. This
variation is not new [17].



Cost model: The cloud charges users based on the
amount of time the VMs are up. Using configurations
with a lot of resources could minimize the running time,
but it may cost a lot more money. Thus, to minimize cost,
we have to find the right balance between resource prices
and the running time. Figure 2 shows the cost of running
Regression on SparkML on different cluster sizes where
each VM comes with 15 GBs of RAM and 4 cores in
AWS EC2. We can see that the cost does not monoton-
ically increase or decrease when we add more resources
into the cluster. This is because adding resources may
accelerate the computation but also raises the price per
unit of running time.

The heterogeneity of applications: Figure 3 shows dif-
ferent shapes for TPC-DS and Regression on Spark and
how they relate to instance types. For TeraSort, a low
memory instance (8 core and 15 GBs of RAM) performs
the best because CPU is a more critical resource. On the
other hand for Regression, the same cluster has 2.4 times
more running time than the best candidate due to the lack
of RAM.

Moreover, the best choice often depends on the ap-
plication configurations, e.g., the number of map and
reduce tasks in YARN. Our work on identifying the
best cloud configurations is complementary to other
works on identifying the best application configurations
(e.g., [19, 38]). CherryPick can work with any (even not
optimal) application configurations.

2.3 Strawman solutions

The two strawman solutions for predicting a near optimal
cloud configuration are modeling and searching.

Accurate modeling of application performance. One
way is to model application performance and then pick
the best configuration based on this model. However, this
methodology has poor adaptivity. Building a model that
works for a variety of applications and cloud configura-
tions can be difficult because the knowledge of the inter-
nal structure of specific applications is needed to make
the model effective. Moreover, building a model through
human intervention for every new application can be te-
dious.

Static searching for the best cloud configuration. An-
other way is to exhaustively search for the best cloud
configuration without relying on an accurate perfor-
mance model. However, this methodology has high over-
head. With 40 instance types at Amazon EC2 and tens of
cluster sizes for an application, if not careful, one could
end up needing tens if not hundreds of runs to identify
the best instance. In addition, trying each cloud con-
figuration multiple times to get around the dynamics in
the cloud (due to resource multiplexing and stragglers)
would exacerbate the problem even further.

Figure 4: CherryPick workflow

To reduce the search time and cost, one could use co-
ordinate descent and search one dimension at a time. Co-
ordinate descent could start with searching for the opti-
mal CPU/RAM ratio, then the CPU count per machine,
then cluster size, and finally disk type. For each dimen-
sion, we could fix the other dimensions and search for
the cheapest configuration possible. This could lead to
suboptimal decisions if for example, because of bad ap-
plication configuration a dimension is not fully explored
or there are local minima in the problem space.

3 CherryPick Design
3.1 Overview

CherryPick follows a general principle in statistical
learning theory [36]: “If you possess a restricted amount
of information for solving some problem, try to solve the
problem directly and never solve a more general problem
as an intermediate step.”

In our problem, the ultimate objective is to find the
best configuration. We also have a very restricted amount
of information, due to the limited runs of cloud config-
urations we can afford. Therefore, the model does not
have enough information to be an accurate performance
predictor, but this information is sufficient to find a good
configuration within a few steps.

Rather than accurately predicting application perfor-
mance, we just need a model that is accurate enough for
us to separate the best configuration from the rest.

Compared to static searching solutions, we dynam-
ically adapt our searching scheme based on the cur-
rent understanding and confidence interval of the perfor-
mance model. We can dynamically pick the next con-
figuration that can best distinguish performance across
configurations and eliminate unnecessary trials. The per-
formance model can also help us understand when to
stop searching earlier once we have a small enough confi-
dence interval. Thus, we can reach the best configuration
faster than static approaches.

Figure 4 shows the joint process of performance mod-
eling and configuration searching. We start with a few
initial cloud configurations (e.g., three), run them, and
input the configuration details and job completion time
into the performance model. We then dynamically pick
the next cloud configuration to run based on the perfor-



Figure 5: An example of BO’s working process (derived
from Figure 1 in [13]).

mance model and feed the result back to the performance
model. We stop when we have enough confidence that
we have found a good configuration.

3.2 Problem formulation

For a given application and workload, our goal is to find
the optimal or a near-optimal cloud configuration that
satisfies a performance requirement and minimizes the
total execution cost. Formally, we use T (~x) to denote
the running time function for an application and its input
workloads. The running time depends on the cloud con-
figuration vector~x, which includes instance family types,
CPU, RAM, and other resource configurations.

Let P(~x) be the price per unit time for all VMs in cloud
configuration~x. We formulate the problem as follows:

minimize
~x

C(~x) = P(~x)×T (~x)

subject to T (~x)≤Tmax

(1)

where C(~x) is the total cost of cloud configuration~x and
Tmax is the maximum tolerated running time1. Know-
ing T (~x) under all candidate cloud configurations would
make it straightforward to solve Eqn (1), but it is expen-
sive because all candidate configurations need to be tried.
Instead, we use BO (with Gaussian Process Priors, see
Section 6) to directly search for an approximate solution
of Eqn (1) with significantly smaller cost.

3.3 Solution with Bayesian Optimization

Bayesian Optimization (BO) [13, 28, 33] is a framework
to solve optimization problem like Eqn. (1) where the ob-

1C(~x) assumes a fixed number of identical VMs.

jective function C(~x) is unknown beforehand but can be
observed through experiments. By modeling C(~x) as a
stochastic process, e.g. a Gaussian Process [26], BO can
compute the confidence interval of C(~x) according to one
or more samples taken from C(~x). A confidence interval
is an area that the curve of C(~x) is most likely (e.g. with
95% probability) passing through. For example, in Fig-
ure 5(a), the dashed line is the actual function C(~x). With
two samples at~x1 and~x2, BO computes a confidence in-
terval that is marked with a blue shadowed area. The
black solid line shows the expected value of C(~x) and the
value of C(~x) at each input point~x falls in the confidence
interval with 95% probability. The confidence interval
is updated (posterior distribution in Bayesian Theorem)
after new samples are taken at ~x3 (Figure 5(b)) and ~x4
(Figure 5(c)), and the estimate of C(~x) improves as the
area of the confidence interval decreases.

BO can smartly decide the next point to sample using
a pre-defined acquisition function that also gets updated
with the confidence interval. As shown in Figure 5, ~x3
(~x4) is chosen because the acquisition function at t = 2
(t = 3) indicates that it has the most potential gain. There
are many designs of acquisition functions in the litera-
ture, and we will discuss how we chose among them in
Section 3.5.

BO is embedded into CherryPick as shown in Fig-
ure 4. At Step 2, CherryPick leverages BO to update the
confidence interval of C(~x). After that, at Step 3, Cher-
ryPick relies on BO’s acquisition function to choose the
best configuration to run next. Also, at Step 4, Cher-
ryPick decides whether to stop the search according to
the confidence interval of C(~x) provided by BO (details
shown in Section 3.5).

Another useful property of BO is that it can accommo-
date observation noise in the computation of confidence
interval of the objective function. Suppose in practice,
given an input point ~x, we have no direct access to C(~x)
but can only observe C(~x)′ that is:

C(~x)′ =C(~x)+ ε (2)

where ε is a Gaussian noise with zero mean, that is
ε ∼ N (0,σ2

ε ). Because C(~x)′ is also Gaussian, BO is
able to infer the confidence interval of C(~x) according
to the samples of C(~x)′ and ε [13]. Note that in our sce-
nario, the observation noise on C(~x) is negligible because
the measurement on running time and price model is ac-
curate enough. However, the ability to handle the addi-
tive noise of BO is essential for us to handle the uncer-
tainty in clouds (details in Section 3.6).

In summary, by integrating BO, CherryPick has the
ability to learn the objective function quickly and only
take samples in the areas that most likely contain the
minimum point. For example, in Figure 5(c) both ~x3 and
~x4 are close to the minimum point of the actual C(~x),



leaving the interval between ~x1 and ~x4 unexplored with-
out any impact on the final result.

3.4 Why do we use Bayesian Optimization?

BO is effective in finding optimal cloud configurations
for Big Data analytics for three reasons.

First, BO does not limit the function to be of any pre-
defined format, as it is non-parametric. This property
makes CherryPick useful for a variety of applications
and cloud configurations.

Second, BO typically needs a small number of sam-
ples to find a near-optimal solution because BO focuses
its search on areas that have the largest expected im-
provements.

Third, BO can tolerate uncertainty. CherryPick faces
two main sources of uncertainty: (i) because of the small
number of samples, CherryPick ’s performance models
are imperfect and usually have substantial prediction er-
rors; (ii) the cloud may not report a stable running time
even for the same application due to resource multiplex-
ing across applications, stragglers, etc. BO can quanti-
tatively define the uncertainty region of the performance
model. The confidence interval it computes can be used
to guide the searching decisions even in face of model
inaccuracy. In Section 3.6, we leverage this property of
BO to handle the uncertainty from cloud dynamics.

One limitation of BO is that its computation complex-
ity is O(N4), where N is the number of data samples.
However, this is perfectly fine because our data set is
small (our target is typically less than 10 to 20 samples
out of hundreds of candidate cloud configurations).

Alternatives Alternative solutions often miss one of the
above benefits: (1) linear regression and linear reinforce-
ment learning are not generic to all applications because
they do not work for non-linear models; (2) techniques
that try to model a function (e.g., linear regression, sup-
port vector regression, boosting tree, etc.) do not con-
sider minimizing the number of sample points. Deep
neural networks [27], table-based modeling [11], and
Covariance matrix adaptation evolution strategy (CMA-
ES) [25] can potentially be used for black-box optimiza-
tion but require a large number of samples. (3) It is dif-
ficult to adapt reinforcement learning [27, 35] to handle
uncertainty and minimize the number of samples while
BO models the uncertainty so as to accelerate the search.

3.5 Design options and decisions

To leverage Bayesian Optimization to find a good cloud
configuration, we need to make several design decisions
based on system constraint and requirements.

Prior function As most BO frameworks do, we choose
to use Gaussian Process as the prior function. It means
that we assume the final model function is a sample from
Gaussian Process. We will discussion this choice in more

details in Section 6.
We describe C(~x) with a mean function µ(·) and co-

variance kernel function k(·, ·). For any pairs of input
points~x1,~x2, we have:

µ(~x1) = E[C(~x1)]; µ(~x2) = E[C(~x2)]

k(~x1,~x2) = E[(C(~x1)−µ(~x1))(C(~x2)−µ(~x2))]

Intuitively, we know that if two cloud configurations, ~x1
and~x2 are similar to each other, C(~x1) and C(~x2) should
have large covariance, and otherwise, they should have
small covariance. To express this intuition, people have
designed numerous formats of the covariance functions
between inputs ~x1 and ~x2 which decrease when ||~x1 −
~x2|| grow. We choose Matern5/2 [31] because it does
not require strong smoothness and is preferred to model
practical functions [33].

Acquisition function There are three main strategies to
design an acquisition function [33]: (i) Probability of
Improvement (PI) – picking the point which can maxi-
mize the probability of improving the current best; (ii)
Expected Improvement (EI) – picking the point which
can maximize the expected improvement over the cur-
rent best; and (iii) Gaussian Process Upper Confidence
Bound (GP-UCB) – picking the point whose certainty
region has the smallest lower bound(when we minimize
a function). In CherryPick we choose EI [13] as it has
been shown to be better-behaved than PI, and unlike the
method of GP-UCB, it does not require its own tuning
parameter [33].

Jones et al. [22] derive an easy-to-compute closed
form for the EI acquisition function. Let Xt be the col-
lection of all cloud configurations whose function values
have been observed by round t, and m = min~x{C(~x)|~x ∈
Xt} as the minimum function value observed so far. For
each input ~x which is not observed yet, we can evaluate
its expected improvement if it is picked as the next point
to observe with the following equation:

EI(~x) =

{
(m−µ(~x))Φ(Z)+σ(~x)φ(Z), if σ(~x)> 0
0, if σ(~x) = 0

(3)

where σ(~x) =
√

k(~x,~x), Z = m−µ(~x)
σ(~x) , and Φ and φ are

standard normal cumulative distribution function and
the standard normal probability density function respec-
tively.

The acquisition function shown in Eqn (3) is designed
to minimize C(~x) without further constraints. Nonethe-
less, from Eqn 1 we know that we still have a perfor-
mance constraint T (~x)≤Tmax to consider. It means that
when we choose the next cloud configuration to evaluate,
we should have a bias towards one that is likely to satisfy
the performance constraint. To achieve this goal, we first
build the model of running time function T (~x) from C(~x)

P(~x) .



Then, as suggested in [18], we modify the EI acquisition
function as:

EI(~x)′ = P[T (~x)≤Tmax]×EI(~x) (4)

Stopping condition We define the stopping condition in
CherryPick as follows: when the expected improvement
in Eqn.(4) is less than a threshold (e.g. 10%) and at least
N (e.g. N = 6) cloud configurations have been observed.
This ensures that CherryPick does not stop the search too
soon and it prevents CherryPick from struggling to make
small improvements.

Starting points Our choice of starting points should
give BO an estimate about the shape of the cost model.
For that, we sample a few points (e.g., three) from
the sample space using a quasi-random sequence [34].
Quasi-random numbers cover the sample space more
uniformly and help the prior function avoid making
wrong assumptions about the sample space.

Encoding cloud configurations We encode the follow-
ing features into~x to represent a cloud configuration: the
number of VMs, the number of cores, CPU speed per
core, average RAM per core, disk count, disk speed and
network capacity of a VM.

To reduce the search space of the Bayesian Optimiza-
tion, we normalize and discretized most of the features.
For instance, for disk speed, we only define fast and slow
to distinguish SSD and magnetic disks. Similarly, for
CPU, we use fast and slow to distinguish high-end and
common CPUs. Such discretization significantly reduces
the space of several features without losing the key in-
formation brought by the features and it also helps to
reduce the number of invalid cloud configurations. For
example, we can discretize the space so that the CPUs
greater (smaller) than 2.2GHz are fast (slow) and the
disks with bandwidth greater (smaller) than 600MB/s are
fast (slow). Then, if we suggest a (fast, fast) combi-
nation for (CPU, Disk), we could choose a 2.5Ghz and
700MBs instance (or any other one satisfying the bound-
ary requirements). Or in place of a (slow, slow) configu-
ration we could pick an instance with 2Ghz of speed and
400MB/s of IO bandwidth. If no such configurations ex-
ist, we can either remove that point from the candidate
space that BO searches or return a large value, so that
BO avoids searching in that space.

3.6 Handling uncertainties in clouds

So far we assumed that the relation between cloud con-
figurations and cost (or running time) is deterministic.
However, in practice, this assumption can be broken due
to uncertainties within any shared environment. The re-
sources of clouds are shared by multiple users so that dif-
ferent users’ workload could possibly have interference
with each other. Moreover, failures and resource over-

loading, although potentially rare, can impact the com-
pletion time of a job. Therefore, even if we run the same
workload on the same cloud with the same configuration
for multiple times, the running time and cost we get may
not be the same.

Due to such uncertainties in clouds, the running time
we can observe from an actual run on configuration ~x is
T̃ (~x) and the cost is C̃(~x). If we let T (~x) = E[T̃ (~x)] and
C(~x) = E[C̃(~x)], we have:

T̃ (~x) = T (~x)(1+ εc) (5)
C̃(~x) =C(~x)(1+ εc) (6)

where εc is a multiplicative noise introduced by the un-
certainties in clouds. We model εc as normally dis-
tributed: εc ∼N (0,σ2

εc).
Therefore, Eqn (1) becomes minimizing the expected

cost with the expected performance satisfying the con-
straint.

BO cannot infer the confidence interval of C(~x) from
the observation of C̃(~x) because the latter is not normally
distributed given that BO assumes C(~x) is Gaussian and
so is (1 + εc). One straightforward way to solve this
problem is to take multiple samples at the same configu-
ration~x, so that C(~x) can be obtained from the average of
the multiple C̃(~x). Evidently, this method will result in a
big overhead in search cost.

Our key idea to solve this problem (so that we only
take one sample at each input) is to transform Eqn. (1) to
the following equivalent format:

minimize
~x

logC(~x) = logP(~x)+ logT (~x)

subject to logT (~x)≤ logTmax

(7)

We use BO to minimize logC(~x) instead of C(~x) since:

logC̃(~x) = logC(~x)+ log(1+ εc) (8)

Assuming that εc is less than one (e.g. εc < 1),
log(1+ εc) can be estimated by εc, so that log(1+ εc)
can be viewed as an observation noise with a normal
distribution, and logC̃(~x) can be treated as the observed
value of logC(~x) with observation noise. Eqn.(8) can be
solved similar to Eqn.(2).

In the implementation of CherryPick , we use Eqn. (7)
instead of Eqn. (1) as the problem formulation.

4 Implementation
In this section, we discuss the implementation details of
CherryPick as shown in Figure 6. It has four modules.

1. Search Controller: Search Controller orchestrates
the entire cloud configuration selection process. To use
CherryPick , users supply a representative workload (see
Section 6) of the application, the objective (e.g. mini-
mizing cost or running time), and the constraints (e.g.
cost budget, maximum running time, preferred instance



Figure 6: Architecture of CherryPick ’s implementation.

types, maximum/minimum cluster size, etc.). Based on
these inputs, the search controller obtains a list of candi-
date cloud configurations and passes it to the Bayesian
Optimization Engine. At the same time, Search Con-
troller installs the representative workload to clouds via
Cloud Controller. This process includes creating VMs in
each cloud, installing the workload (applications and in-
put data), and capturing a customized VM image which
contains the workload. Search Controller also moni-
tors the current status and model on the Bayesian Opti-
mization engine and decides whether to finish the search
according to the stopping condition discussed in Sec-
tion 3.5.

2. Cloud Monitor: Cloud Monitor runs benchmark-
ing workloads of Big Data defined by CherryPick on
different clouds. It repeats running numerous categories
of benchmark workloads on each cloud to measure the
upper-bound (or high percentile) of the cloud noise 2.
The result is offered to Bayesian Optimization engine
as the εc in Eqn. (8). This monitoring is lightweight;
we only need to run this system every few hours with a
handful of instances.

3. Bayesian Optimization Engine: Bayesian Opti-
mization Engine is built on top of Spearmint [6] which
is an implementation of BO in Python. Besides the stan-
dard BO, it also has realized our acquisition function in
Eqn (3) and the performance constraint in Eqn (4). How-
ever, Spearmint’s implementation of Eqn (4) is not effi-
cient for our scenario because it assumes C(~x) and T (~x)
are independent and trains the models of them separately.
We modified this part so that T (~x) is directly derived
from C(~x)

P(~x) after we get the model of C(~x). Our imple-
mentation of this module focuses on the interfaces and
communications between this module and others. For
taking a sample of a selected cloud configuration, the
BO engine submits a cluster creation request and a start
workload request via the Cloud Controller.

4. Cloud Controller: Cloud Controller is an adapta-
tion layer which handles the heterogeneity to control the

2Over-estimating εc means more search cost.

clouds. Each cloud has its own APIs and semantics to do
the operations such as create/delete VMs, create/delete
virtual networks, capturing images from VMs, and list
the available instance types. Cloud Controller defines a
uniform API for the other modules in CherryPick to per-
form these operations. In addition, the API also includes
sending commands directly to VMs in clouds via SSH,
which facilitates the control of the running workload in
the clouds.

The entire CherryPick system is written in Python
with about 5,000 lines of code, excluding the legacy part
of Spearmint.

5 Evaluation
We evaluate CherryPick with 5 types of big data analyt-
ics applications on 66 cloud configurations. Our evalua-
tions show that CherryPick can pick the optimal configu-
ration with a high chance (45-90%) or find a near-optimal
configuration (within 5% of the optimal at the median)
with low search cost and time, while alternative solu-
tions such as coordinate descent and random search can
reach up to 75% more running time and up to 45% more
search time than CherryPick . We also compare Cher-
ryPick with Ernest [37] and show how CherryPick can
reduce the search time by 90% and search cost by 75%
for SQL queries. We discuss insights on why CherryPick
works well and show how CherryPick adapt to changing
workloads and various performance constraints.

5.1 Experiment setup

Applications: We chose benchmark applications
on Spark [44] and Hadoop [41] to exercise different
CPU/Disk/RAM/Network resources: (1) TPC-DS [7] is
a recent benchmark for big data systems that models
a decision support workload. We run TPC-DS bench-
mark on Spark SQL with a scale factor of 20. (2) TPC-
H [8] is another SQL benchmark that contains a num-
ber of ad-hoc decision support queries that process large
amounts of data. We run TPC-H on Hadoop with a
scale factor of 100. Note that our trace runs 20 queries
concurrently. While it may be possible to model each
query’s performance, it is hard to model the interac-
tions of these queries together. (3) TeraSort [29] is a
common benchmarking application for big data analyt-
ics frameworks [1, 30], and requires a balance between
high IO bandwidth and CPU speed. We run TeraSort on
Hadoop with 300 GB of data, which is large enough to
exercise disks and CPUs together. (4) The SparkReg [4]
benchmark consists of machine learning workloads im-
plemented on top of Spark. We ran the regression work-
load in SparkML with 250k examples, 10k features, and
5 iterations. This workload heavily depends on memory
space for caching data and has minimal use for disk IO.
(5) SparkKm is another SparkML benchmark [5]. It is



Instance Size Number of instances
large 16 24 32 40 48 56
xlarge 8 12 16 20 24 28

2xlarge 4 6 8 10 12 14

Number of Cores 32 48 64 80 96 112

Table 2: Configurations for one instance family.

a clustering algorithm that partitions a space into k clus-
ters with each observation assigned to the cluster with the
closest mean. We use 250k observations with 10k fea-
tures. Similar to SparkReg, this workload is dependent
on memory space and has less stringent requirements for
CPU and disk IO.

Cloud configurations: We choose four families in
Amazon EC2: M4 (general purpose), C4 (compute op-
timized), R3 (memory optimized), I2 (disk optimized)
instances. Within each family, we used large, xlarge, and
2xlarge instance sizes each with 2, 4, and 8 cores per ma-
chine respectively. For each instance size, we change the
total number of cores from 32 to 112. Table 2 shows the
18 configurations for each of the four families. We run
a total of 66 configurations, rather than 72 (18 × 4), be-
cause the smallest size for I2 starts from xlarge. We do
not choose more configurations due to time and expense
constraints. However, we make sure the configurations
we choose are reasonable for our objective (i.e., mini-
mizing cost). For example, we did not choose 4xlarge
instances because 4xlarge is more expensive than 2xlarge
but shows diminishing returns in terms of running time.

Objectives: We define the objective as minimizing the
cost of executing the application under running time con-
straints. By default, we set a loose constraint for run-
ning time so CherryPick searches through a wider set of
configurations. We evaluate tighter constraints in Sec-
tion 5.4. Note that minimizing running time with no cost
constraint always leads to larger clusters, and therefore,
is rather simple. On the other hand, minimizing the cost
depends on the right balance between cluster size and
cluster utilization.

CherryPick settings: By default, we use EI= 10%,
N = 6, and 3 initial samples. In our experiments, we
found that EI= 10% gives a good trade-off between
search cost and accuracy. We also tested other EI val-
ues in one experiment.

Alternative solutions: We compare CherryPick with
the following strategies: (1) Exhaustive search, which
finds the best configuration by running all the config-
urations; (2) Coordinate descent, which searches one
coordinate – in order of CPU/RAM ratio (which speci-
fies the instance family type), CPU count, cluster size,
disk type – at a time (Section 2.3) from a randomly
chosen starting point. The ordering of dimensions can

also impact the result. It is unclear whether a combina-
tion of dimensions and ordering exists that works best
across all applications. Similar approaches have been
used for tuning configurations for Map Reduce jobs and
web servers [24, 42]. (3) Random search with a budget,
which randomly picks a number of configurations given
a search budget. Random search is used by previous con-
figuration tuning works [20, 43]. (4) Ernest [37], which
builds a performance model with common communica-
tion patterns. We run Ernest once per-instance type and
use the model to predict the optimal number of instances.

Metrics: We compare CherryPick with alternative so-
lutions using two metrics: (i) the running cost of the con-
figuration: the expense to run a job with the selected
configuration; (ii) the search cost: the expense to run
all the sampled configurations. All the reported numbers
are normalized by the exhaustive search cost and running
cost across the clusters in Table 2.

We run CherryPick and random search 20 times with
different seeds for starting points. For the coordinate de-
scent, we start from all the 66 possible starting configu-
rations. We then show the 10th, median, and 90th per-
centile of the search cost and running cost of CherryPick
normalized by the optimal configuration reported by ex-
haustive search.

5.2 Effectiveness of CherryPick

CherryPick finds the optimal configuration in a high
chance (45-90%) or a near-optimal configuration
with low search cost and time: Figure 7a shows the
median, 10th percentile, and 90th percentile of running
time for the configuration picked by CherryPick for each
of the five workloads. CherryPick finds the exact opti-
mal configuration with 45-90% chance, and finds a con-
figuration within 5% of the optimal configuration at the
median. However, using exhaustive search requires 6-9
times more search cost and 5-9.5 times more search time
compared with CherryPick . On AWS, which charges on
an hourly basis, after running TeraSort 100 times, ex-
haustive search costs $581 with $49 for the remainder of
the runs. While CherryPick uses $73 for searching and
$122 for the rest of the runs saving a total of $435.

In terms of accuracy, we find that that CherryPick has
good accuracy across applications. On median, Cher-
ryPick finds an optimal configuration within 5% of the
optimal configuration. For TPC-DS, CherryPick finds a
configuration within 20% of the optimal in the 90th per-
centile; For TPC-H, the 90th percentile is 7% worse than
optimal configuration; Finally, for TeraSort, SparkReg,
and SparkKm CherryPick ’s 90th percentile configura-
tion is 0%, 18%, 38% worse than the optimal respec-
tively. It is possible to change the EI of CherryPick to
find even better configurations.
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(a) Running cost
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(b) Search cost

Figure 7: Comparing CherryPick with coordinate descent. The bars show
10th and 90th percentile.
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Figure 8: Running cost of configurations
by CherryPick and random search.
The bars show 10th and 90th percentile.

CherryPick is more stable in picking near-optimal
configurations and has less search cost than coordi-
nate descent. Across applications, the median config-
uration suggested by coordinate descent is within 7% of
the optimal configuration. On the other hand, the tail of
the configuration suggested by coordinate descent can be
far from optimal. For TPC-DS, TPC-H, and TeraSort, the
tail configuration is 76%, 56%, and 78% worse than opti-
mal, while using comparable or more search cost. This is
because coordinate descent can be misled by the result of
the run. For example, for TPC-DS, C4 family type has
the best performance. In our experiment, if coordinate
descent starts its search from a configuration with a large
number of machines, the C4 family fails to finish the job
successfully due to the scheduler failing. Therefore, the
C4 family is never considered in the later iterations of
coordinate descent runs. This leads coordinate descent
to a suboptimal point that can be much worse than the
optimal configuration.

In contrast, CherryPick has stronger ability to navigate
around these problems because even when a run fails to
finish on a candidate configuration, it uses Gaussian pro-
cess to model the global behavior of the function from
the sampled configurations.

CherryPick reaches better configurations with more
stability compared with random search with similar
budget: Figure 8 compares the running cost of con-
figurations suggested by CherryPick and random search
with equal/2x/4x search cost. With the same search cost,
random search performs up to 25% worse compared to
CherryPick on the median and 45% on the tail. With
4x cost, random search can find similar configurations to
CherryPick on the median. Although CherryPick may
end up with different configurations with different start-
ing points, it consistently has a much higher stability of
the running cost compared to random search. CherryPick
has a comparable stability to random search with 4x bud-

get, since random search with a 4x budget almost visits
all the configurations at least once.

CherryPick reaches configurations with similar run-
ning cost compared with Ernest [37], but with lower
search cost and time: It is hard to extend Ernest to
work with a variety of applications because it requires
using a small representative dataset to build the model.
For example, TPC-DS contains 99 queries on 24 tables,
where each query touches a different set of tables. This
makes it difficult to determine which set of tables should
be sampled to build a representative small-scale experi-
ment. To overcome this we use the TPC-DS data gener-
ator and generate a dataset with scale factor 2 (10% of
target data size) and use that for training. We then use
Ernest to predict the best configuration for the target data
size. Finally, we note that since Ernest builds a separate
model for each instance type we repeat the above process
11 times, once for each instance type.

Figure 9 shows that Ernest picks the best configura-
tion for TPC-DS, the same as CherryPick , but takes 11
times the search time and 3.8 times the search cost. Al-
though Ernest identifies the best configuration, its pre-
dicted running time is up to 5 times of the actual running
time. This is because, unlike iterative ML workloads, the
TPC-DS performance model has a complex scaling be-
havior with input scale and this is not captured by the
linear model used in Ernest. Thus, once we set a tighter
performance constraint, Ernest suggests a configuration
that is 2 times more expensive than CherryPick with 2.8
times more search cost.

CherryPick can tune EI to trade-off between search
cost and accuracy: The error of the tail configura-
tion for SparkKm as shown in Figure 7a can be as high
as 38%. To get around this problem, the users can use
lower values of EI to find better configurations. Fig-
ure 10 shows the running cost and search cost for dif-
ferent values of EI. At EI < 6%, CherryPick has much
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Figure 9: Comparing Ernest to
CherryPick (TPC-DS).
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Figure 10: Search cost and running cost
of SparkKm with different EI values.
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Figure 11: Bayesian opt. process for the
best/worst configuration (TeraSort).
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(b) TPC-DS

SparkReg TPC-DS
Step VM Type # VMs VM Type # VMs

1 r3.2xlarge 10 r3.2xlarge 10
2 r3.2xlarge 4 r3.2xlarge 4
3 c4.xlarge 8 c4.xlarge 8
4 r3.large 32 r3.large 32
5 i2.2xlarge 10 r3.2xlarge 14
6 r3.2xlarge 14 c4.2xlarge 4
7 m4.xlarge 28
8 m4.2xlarge 14
9 c4.2xlarge 10

(c) Search path for TPC-DS and SparkReg
Figure 12: Search path for TPC-DS and SparkReg

better accuracy, finding configurations that at 90th per-
centile are within 18% of the optimal configuration. If
we set EI < 3%, CherryPick suggests configurations that
are within 1% of the optimal configuration at 90th per-
centile resulting in a 26% increase in search cost.

This can be a knob where users of CherryPick can
trade-off optimality for search cost. For example, if users
of CherryPick predict that the recurring job will be pop-
ular, setting a low EI value can force CherryPick to look
for better configurations more carefully. This may result
in larger savings over the lifetime of the job.

5.3 Why CherryPick works?

We now show CherryPick behavior matches the key in-
sights discussed in Section 3.1. For this subsection, we
set the stopping condition EI<1% to make it easier to
show how CherryPick navigates the space.

Previous performance prediction solutions require
many training samples to improve prediction accuracy.
CherryPick spends the budget to improve the prediction
accuracy of those configurations that are closer to the
best. Figure 11 shows the means and confidence inter-
vals of the running cost for the best and worst config-
urations, and how the numbers change during the pro-
cess of Bayesian optimization. Initially, both configura-
tions have large confidence intervals. As the search pro-
gresses, the confidence interval for the best configuration
narrows. In contrast, the estimated cost for the worst con-
figuration has a larger confidence interval and remains
large. This is because CherryPick focuses on improving
the estimation for configurations that are closer to the op-

timal.

Although CherryPick takes a black-box approach, it
automatically learns the relation between cloud resources
and the running time. Figure 13 shows CherryPick ’s fi-
nal estimation of the running time versus cluster size.
The real curve follows Amdahl’s law: (1) adding more
VMs reduces the running time; (2) at some point, adding
more machines has diminishing returns due to the se-
quential portion of the application. The real running
time falls within the confidence interval of CherryPick .
Moreover, CherryPick has smaller confidence intervals
for the more promising region where the best configu-
rations (those with more VMs) are located. It does not
bother to improve the estimation for configurations with
fewer VMs.

Even though CherryPick has minimal information
about the application, it adapts the search towards the
features that are more important to the application. Fig-
ure 12 shows example search paths for TPC-DS and
SparkReg from the same three starting configurations.
For SparkReg, CherryPick quickly identifies that clus-
ters with larger RAM (R3 instances) have better perfor-
mance and redirects the search towards such instances.
In contrast, for TPC-DS, the last few steps suggest that
CherryPick has identified that CPU is more important,
and therefore the exploration is directed towards VMs
with better CPUs (C4 instances). Figure 12 shows that
CherryPick directly searches more configurations with
larger #cores for TPC-DS than for SparkReg.
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Figure 13: CherryPick learns dimin-
ishing returns of larger clusters (TPC-H,
c4.2xlarge VMs).
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Figure 14: Sensitivity to workload size
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Figure 15: CherryPick works with time
constraints (TPC-H).

5.4 Handling workload changes

CherryPick depends on representative workloads. Thus,
one concern is CherryPick ’s sensitivity to the variation
of input workloads. In Figure 14, we keep the best con-
figuration for the original workload (100% input size)
C100 and test the running cost of the C100% on workloads
with 50% to 150% of the original input size. For Tera-
Sort, we can continue to use C100% to achieve the opti-
mal cost with different input sizes. For SparkReg, C100%
remains effective for smaller workloads. However, when
the workload is increased by 25%, C100% can get to 260%
the running cost of the new best configuration (C125%).
This is because C100% does not have enough RAM for
SparkReg, which leads to more disk accesses.

Since input workloads usually vary in practice, Cher-
ryPick needs a good selection of representative work-
loads For example, for SparkReg, we should choose a
relatively larger workload as the representative work-
load (e.g., choosing 125% gives you more stability than
choosing 100%). We will discuss more on how to select
representative workloads in Section 6.

When the difference between CherryPick ’s estimation
of the running cost and the actual running cost is above a
threshold, the user can rerun CherryPick . For example,
in Figure 14, suppose the user trains CherryPick with a
100% workload for SparkReg. With a new workload at
size 125%, when he sees the running cost becomes 2x
higher than expected, he can rerun CherryPick to build a
new model for the 125% workload.

5.5 Handling performance constraints

We also evaluate CherryPick with tighter performance
constraints on the running time (400 seconds to 1000
seconds) for TPC-H, as shown in Figure 15. CherryP-
ick consistently identifies near-optimal configuration (2-
14% difference with the optimal) with similar search cost
to the version without constraints.

6 Discussion

Representative workloads: CherryPick relies on rep-
resentative workloads to learn and suggest a good cloud

configuration for similar workloads. Two workloads are
similar if they operate on data with similar structures
and sizes, and the computations on the data are similar.
For example, for recurring jobs like parsing daily logs or
summarizing daily user data with the same SQL queries,
we can select one day’s workload to represent the fol-
lowing week or month, if in this period the user data and
the queries are not changing dramatically. Many previ-
ous works were built on top of the similarity in recurring
jobs [10, 17]. Picking a representative workload for non-
recurring jobs hard, and for now, CherryPick relies on
human intuitions. An automatic way to select represen-
tative workload is an interesting avenue for future work.

The workload for recurring jobs can also change with
time over a longer term. CherryPick detects the need
to recompute the cloud configuration when it finds large
gaps between estimated performance and real perfor-
mance under the current configuration.

Larger search space: With the customizable virtual
machines [2] and containers, the number of configura-
tions that users can run their applications on becomes
even larger. In theory, the large candidate number should
not impact on the complexity of CherryPick because the
computation time is only related with the number of sam-
ples rather than the number of candidates (BO works
even in continuous input space). However, in practice,
it might impact the speed of computing the maximum
point of the acquisition function in BO because we can-
not simply enumerate all of the candidates then. More
efficient methods, e.g. Monte Carlo simulations as used
in [6], are needed to find the maximum point of the ac-
quisition function in an input-agnostic way. Moreover,
the computations of acquisition functions can be paral-
lelized. Hence, customized VM only has small impacts
on the feasibility and scalability of CherryPick .

Choice of prior model: By choosing Gaussian Process
as a prior, we assume that the final function is a sample
from Gaussian Process. Since Gaussian Process is non-
parametric, it is flexible enough to approach the actual
function given enough data samples. The closer the ac-



tual function is to a Gaussian Process, the fewer the data
samples and searching we need. We admit that a better
prior might be found given some domain knowledge of
specific applications, but it also means losing the auto-
matic adaptivity to a set of broader applications.

Although any conjugate distribution can be used as a
prior in BO [32], we chose Gaussian Process because
it is widely accepted as a good surrogate model for
BO [33]. In addition, when the problem scale becomes
large, Gaussian Process is the only choice which is com-
putationally tractable as known so far.

7 Related Work

Current practices in selecting cloud configurations
Today, developers have to select cloud configurations
based on their own expertise and tuning. Cloud providers
only make high-level suggestions such as recommend-
ing I2 instances in EC2 for IO intensive applications,
e.g., Hadoop MapReduce. However, these suggestions
are not always accurate for all workloads. For exam-
ple, for our TPC-H and TeraSort applications on Hadoop
MapReduce, I2 is not always the best instance family to
choose.

Google provides recommendation services [3] based
on the monitoring of average resource usage. It is useful
for saving cost but is not clear how to adjust the resource
allocation (e.g. scaling down VMs vs. reducing the clus-
ter size) to guarantee the application performance.

Selecting cloud configurations for specific applica-
tions The closest work to us is Ernest [37], which we
have already compared in Section 1. We also have dis-
cussed previous works and strawman solutions in Sec-
tion 2 that mostly focus on predicting application perfor-
mance [19, 21, 37]. Bodik et al. [12] proposed a frame-
work that learns performance models of web applications
with lightweight data collection from a production envi-
ronment. It is not clear how to use such data collection
technique for modeling big data analytics jobs, but it is
an interesting direction we want to explore in the future.

Previous works [11, 40] leverage table based models to
predict performance of applications on storage devices.
The key idea is to build tables based on input parame-
ters and use interpolation between tables for prediction.
However, building such tables requires a large amount
of data. While such data is available to data center op-
erators, it is out of reach for normal users. CherryPick
works with a restricted amount of data to get around this
problem.

Tuning application configurations: There are sev-
eral recent projects that have looked at tuning application
configurations within fixed cloud environments. Some of
them [19, 38, 45] propose to monitor resource usage in
Hadoop framework and adjust Hadoop configurations to

improve the application performance. Others search for
the best configurations using random search [19] or lo-
cal search [24, 42]. Compared to Hadoop configuration,
cloud configurations have a smaller search space but a
higher cost of trying out a configuration (both the ex-
pense and the time to start a new cluster). Thus we find
Bayesian optimization a better fit for our problem. Cher-
ryPick is complementary to these works and can work
with any application configurations.

Online scheduler of applications: Paragon [15] and
Quasar [16] are online schedulers that leverage historical
performance data from scheduled applications to quickly
classify any new incoming application, assign the appli-
cation proper resources in a datacenter, and reduce inter-
ferences among different applications. They also rely on
online adjustments of resource allocations to correct mis-
takes in the modeling phase. The methodology cannot be
directly used in CherryPick ’s scenarios because usually,
users do not have historical data, and online adjustment
(e.g., changing VM types and cluster sizes) is slow and
disruptive to big data analytics. Containers allow online
adjustment of system resources, so it might be worth re-
visiting these approaches.

Parameter tuning with BO: Bayesian Optimization
is also used in searching optimal Deep Neural Net-
work configurations for specific Deep Learning work-
loads [9, 33] and tuning system parameters [14]. Cher-
ryPick is a parallel work which searches cloud configu-
rations for big data analytics.

8 Conclusion
We present CherryPick , a service that selects near-
optimal cloud configurations with high accuracy and
low overhead. CherryPick adaptively and automatically
builds performance models for specific applications and
cloud configurations that are just accurate enough to dis-
tinguish the optimal or a near-optimal configuration from
the rest. Our experiments on Amazon EC2 with 5 widely
used benchmark workloads show that CherryPick selects
optimal or near-optimal configurations with much lower
search cost than existing solutions.
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