
Page 1

DAP Spr.‘01 ©UCB 1

How to Have a Bad Career How to Have a Bad Career
in Research/Academia in Research/Academia

Professor David A. Patterson

November 2001

www.cs.berkeley.edu/~pattrsn/talks/BadCareer.pdf

DAP Nov.‘01 ©UCB 2

Outline

• Part I: Key Advice for a Bad Career while a Grad St udent
• Part II: Key Advice on Alternatives to a Bad Gradua te

Career
• Part III: Key Advice for a Bad Career, Post Ph.D.
• Part IV: Key Advice on Alternatives to a Bad Career , Post

Ph.D.
• Topics covered in Parts III and IV

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

Page 2

DAP Nov.‘01 ©UCB 3

Part I: How to Have a Bad Graduate Career

• Concentrate on getting good grades:
– postpone research involvement: might lower GPA

• Minimize number and flavors of courses
– Why take advantage of 1 of the top departments with an

emphasis on excellent grad courses?
– Why take advantage of a campus with 35/36 courses i n the

top 10?
– May affect GPA

• Don’t trust your advisor
– Advisor is only interested in his or her own career , not yours
– Advisor may try to mentor you, use up time, interf ering with

GPA

• Only work the number of hours per week you are paid !
– Don’t let master class exploit the workers!

DAP Nov.‘01 ©UCB 4

Part I: How to Have a Bad Graduate Career

• Concentrate on graduating as fast as possible
– Winner is first in class to Ph.D.
– People only care about that you have a Ph.D. and yo ur GPA,

not on what you know
» Nirvana: graduating in 3.5 years with a 4.0 GPA!

– Don’t spend a summer in industry: takes longer
» How could industry experience help with selecting P h.D. topic?

– Don’t work on large projects: takes longer
» Have to talk to others, have to learn different are as
» Synchronization overhead of multiple people

– Don’t do a systems Ph.D.: takes longer

• Don’t go to conferences
– It costs money and takes time; you’ll have plenty o f time to

learn the field after graduating

• Don’t waste time polishing writing or talks
– Again, that takes time

Page 3

DAP Nov.‘01 ©UCB 5

Part II: Alternatives to a Bad Graduate Career

• Concentrate on getting good grades?
– Reality: need to maintain reasonable grades

» Only once gave a below B in CS 252
» 3 prelim courses only real grades that count

– What matters on graduation is letters of recommenda tion
from 3-4 faculty/Ph.D.s who have known you for 5+ y ears

• Minimize number and flavors of courses?
– Your last chance to be exposed to new ideas before have to

learn them on your own (re: queueing theory and me)
– Get a real outside minor from a campus with great

departments in all fields; e.g., Management of Tech nology
certificate, Copyright Law

• Don’t trust your advisor?
– Primary attraction of campus vs. research lab

is getting to work with grad students
– Faculty career is judged in large part

by success of his or her students
– try taking advice of advisor?

DAP Nov.‘01 ©UCB 6

Part II: Alternatives to a Bad Graduate Career
• Concentrate on graduating as fast as possible?

– Your last chance to learn; most learning will be ou tside the
classroom

– Considered newly “minted” when finish Ph.D.
» Judged on year of Ph.D. vs. year of birth
» To a person in their 40s or 50s,

1 or 2 more years is roundoff error (27 = 29)

• Don’t go to conferences?
– Chance to see firsthand what the field is like, whe re its going
– There are student rates, you can share a room
– Talk to people in the field in the halls!
– If your faculty advisor won’t pay, then pay it your self;

almost always offer student rates, can often share rooms
» Prof. Landay paid his own way to conferences while grad student

• Don’t waste time polishing writing or talks?
– In the marketplace of ideas, the more polish the mo re likely

people will pay attention to your ideas
– Practice presentation AND answering tough questions

Page 4

DAP Nov.‘01 ©UCB 7

Part II: Alternatives to a Bad Graduate Career

• Only work the number of hours per week you are paid ?
– Campus Faculty average is 65-70 hours/work; EECS h igher
– Students should be in that range
– Organize each day: when most alert? nap? exercise? sleep?
– When/how often/how long: write, read, program, emai l?
– To do lists: daily, weekly, semester

• Industrial Experience?
– 1st or 2nd summer get work experience, or 1 semeste r off

• Sutherland’s advice (Father of Computer Graphics)
– Be bold; Take chances on hard topics
– see Technology and Courage URL on CS252, or search on Google

• Advice from a very successful recent student; Remzi Arpaci
– Great ideas, did lots of papers, well thought of
– I asked: Why do you think you did so well?
– He said I gave him advice the first week he arrived
– I asked: What did I say?
– He said 3 observations, and still good advice today

DAP Nov.‘01 ©UCB 8

Part II: How to be a Success in Graduate School
• 1) “Swim or Sink”

–“Success is determined by me (student) primarily”

–Faculty set up opportunity, but up to me leverage it

• 2) “Read/learn on your own”
–“Related to 1), you told me this as you handed me a

stack of about 20 papers”

• 3) “Teach your advisor”
–“I really liked this concept; go out and learn about

something and then teach the professor”

–Fast moving field, don’t expect Prof to be
at forefront everywhere

Page 5

DAP Nov.‘01 ©UCB 9

Summary Advice of Alternative to
Bad Career in Graduate School

• Show Initiative !
– don’t wait for advisor (or more senior grad

students) to show you what to do

• Ask questions !
– lots of smart people in grad school (and even

on the faculty), but don’t be intimidated.
– Either they know and you will learn, or they

don’t know and you will all learn by trying to
determine the answer

• When to graduate

Time

Knowledge

Expectations
DAP Nov.‘01 ©UCB 10

Outline

• Part I: Key Advice for a Bad Career while a Grad St udent
• Part II: Key Advice on Alternatives to a Bad Gradua te

Career
• Part III: Key Advice for a Bad Career, Post Ph.D.
• Part IV: Key Advice on Alternatives to a Bad Career , Post

Ph.D.
• Topics covered in Parts III and IV

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

Page 6

DAP Nov.‘01 ©UCB 11

Bad Career Move #1: Be THE leading expert

• Invent a new field!
– Make sure its slightly different

• Be the real Lone Ranger: Don’t work with others
– No ambiguity in credit
– Adopt the Prima Donna personality

• Research Horizons
– Never define success
– Avoid Payoffs of less than 20 years
– Stick to one topic for whole career
– Even if technology appears to leave you behind,

stand by your problem

DAP Nov.‘01 ©UCB 12

Announcing a New Operating System Field:
“ Disability-Based Systems ”

• Computer Security is increasingly important
– Insight: capability-based addressing almost right

• Idea: Create list of things that process CANNOT do!
• Key Question:

should you store disabilities with each user
or with the objects they can’t access?

• Other topics: encrypted disabilities,
disability-based addressing

• Start a new sequence of courses and new journal on
Theory and Practice of Disability-Based Systems

Page 7

DAP Nov.‘01 ©UCB 13

Bad Career Move #2: Let Complexity Be Your Guide
(Confuse Thine Enemies)

• Best compliment:
“Its so complicated, I can’t understand the ideas”

• Easier to claim credit for subsequent good ideas
– If no one understands, how can they contradict your claim?

• It’s easier to be complicated
– Also: to publish it must be different; N+1st incre mental change

• If it were not unsimple then how could distinguishe d
colleagues in departments around the world be posit ively
appreciative of both your extraordinary intellectua l grasp of
the nuances of issues as well as the depth of your
contribution?

DAP Nov.‘01 ©UCB 14

Bad Career Move #3: Never be Proven Wrong

• Avoid Implementing
• Avoid Quantitative Experiments

– If you’ve got good intuition, who needs experiments ?
– Why give grist for critics’ mill?
– Takes too long to measure

• Avoid Benchmarks
• Projects whose payoff is ≥ 20 years

gives you 19 safe years

Page 8

DAP Nov.‘01 ©UCB 15

Bad Career Move #4:
Use the Computer Scientific Method

Computer Scientific Method
• Hunch
• 1 experiment

& change all parameters
• Discard if doesn’t support hunch
• Why waste time? We know this

Obsolete Scientific Method
• Hypothesis
• Sequence of experiments
• Change 1 parameter/exp.
• Prove/Disprove Hypothesis
• Document for others to

reproduce results

DAP Nov.‘01 ©UCB 16

Bad Career Move #5:
Don’t be Distracted by Others (Avoid Feedback)

• Always dominate conversations: Silence is ignoranc e
– Corollary: Loud is smart

• Don’t read
• Don’t be tainted by interaction with users, industr y
• Reviews

– If it's simple and obvious in retrospect => Reject
– Quantitative results don't matter if they just show you what

you already know => Reject
– Everything else => Reject

Page 9

DAP Nov.‘01 ©UCB 17

Bad Career Move #6:
Publishing Journal Papers IS Technology Transfer

• Target Archival Journals: the Coin of the Academic Realm
– It takes 2 to 3 years from submission to

publication=>timeless

• As the leading scientist, your job is to publish in journals;
its not your job to make you the ideas palatable to the
ordinary engineer

• Going to conferences and visiting companies just us es up
valuable research time

– Travel time, having to interact with others, serve on program
committees, ...

DAP Nov.‘01 ©UCB 18

Bad Career Move #7:
Writing Tactics for a Bad Career

• Student productivity = number of papers
– Number of students: big is beautiful
– Never ask students to implement: reduces papers

• Legally change your name to Aaaanderson

1
idea

4
journal papers

16
extended abstracts

64
technical reports

“Publication
pyramid

of
success”

• Papers: It’s Quantity, not Quality
– Personal Success = Length of Publication List
– “The LPU (Least Publishable Unit) is Good for You”

Page 10

DAP Nov.‘01 ©UCB 19

5 Writing Commandments for a Bad Career

I. Thou shalt not define terms, nor explain anythin g.
II. Thou shalt replace “will do” with “have done”.
III. Thou shalt not mention drawbacks to your appro ach.
IV. Thou shalt not reference any papers.
V. Thou shalt publish before implementing.

DAP Nov.‘01 ©UCB 20

7 Talk Commandments for a Bad Career

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt cover thy naked slides.
VI. Thou shalt not skip slides in a long talk.
VII. Thou shalt not practice.

Page 11

DAP Nov.‘01 ©UCB 21

Following all the commandments

• We describe the philosophy and design of the control flow machine, and present the results of detailed simulations of the
performance of a single processing element. Each factor is compared with the measured performance of an advanced von
Neumann computer running equivalent code. It is shown that the control flow processor compares favorably in the program.

• We present a denotational semantics for a logic program to construct a control flow for the logic program. The control flow is
defined as an algebraic manipulator of idempotent substitutions and it virtually reflects the resolution deductions. We also
present a bottom-up compilation of medium grain clusters from a fine grain control flow graph. We compare the basic block
and the dependence sets algorithms that partition control flow graphs into clusters.

• A hierarchical macro-control-flow computation allows them to exploit the coarse grain parallelism inside a macrotask, such as
a subroutine or a loop, hierarchically. We use a hierarchical definition of macrotasks, a parallelism extraction scheme among
macrotasks defined inside an upper layer macrotask, and a scheduling scheme which assigns hierarchical macrotasks on
hierarchical clusters.

• We apply a parallel simulation scheme to a real problem: the simulation of a control flow architecture, and we compare the
performance of this simulator with that of a sequential one. Moreover, we investigate the effect of modeling the application on
the performance of the simulator. Our study indicates that parallel simulation can reduce the execution time significantly if
appropriate modeling is used.

• We have demonstrated that to achieve the best execution time for a control flow program, the number of nodes within the
system and the type of mapping scheme used are particularly important. In addition, we observe that a large number of
subsystem nodes allows more actors to be fired concurrently, but the communication overhead in passing control tokens to
their destination nodes causes the overall execution time to increase substantially.

• The relationship between the mapping scheme employed and locality effect in a program are discussed. The mapping
scheme employed has to exhibit a strong locality effect in order to allow efficient execution

• Medium grain execution can benefit from a higher output bandwidth of a processor and finally, a simple superscalar processor
with an issue rate of ten is sufficient to exploit the internal parallelism of a cluster. Although the technique does not
exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It
can be automated and applied to systems with arbitrary loops and nondeterminism.

DAP Nov.‘01 ©UCB 22

7 Poster Commandments for a Bad Career

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt not attract attention to thyself.
VI. Thou shalt not prepare a short oral overview.
VII. Thou shalt not prepare in advance.

Page 12

DAP Nov.‘01 ©UCB 23

Following all the commandments

We describe the philosophy and design of the
control flow machine, and present the results
of detailed simulations of the performance of a
single processing element. Each factor is
compared with the measured performance of
an advanced von Neumann computer running
equivalent code. It is shown that the control
flow processor compares favorably in the
program.

We present a denotational semantics for a
logic program to construct a control flow for
the logic program. The control flow is defined
as an algebraic manipulator of idempotent
substitutions and it virtually reflects the
resolution deductions. We also present a
bottom-up compilation of medium grain
clusters from a fine grain control flow graph.
We compare the basic block and the
dependence sets algorithms that partition
control flow graphs into clusters.

Our compiling strategy is to exploit coarse-
grain parallelism at function application level:
and the function application level parallelism is
implemented by fork-join mechanism. The
compiler translates source programs into
control flow graphs based on analyzing flow of
control, and then serializes instructions within
graphs according to flow arcs such that
function applications, which have no control
dependency, are executed in parallel.

A hierarchical macro-control-flow computation
allows them to exploit the coarse grain
parallelism inside a macrotask, such as a
subroutine or a loop, hierarchically. We use a
hierarchical definition of macrotasks, a
parallelism extraction scheme among
macrotasks defined inside an upper layer
macrotask, and a scheduling scheme which
assigns hierarchical macrotasks on
hierarchical clusters.

We apply a parallel simulation scheme to a
real problem: the simulation of a control flow
architecture, and we compare the
performance of this simulator with that of a
sequential one. Moreover, we investigate the
effect of modeling the application on the
performance of the simulator. Our study
indicates that parallel simulation can reduce
the execution time significantly if appropriate
modeling is used.

We have demonstrated that to achieve the
best execution time for a control flow program,
the number of nodes within the system and
the type of mapping scheme used are
particularly important. In addition, we observe
that a large number of subsystem nodes
allows more actors to be fired concurrently,
but the communication overhead in passing
control tokens to their destination nodes
causes the overall execution time to increase
substantially.

The relationship between the mapping
scheme employed and locality effect in a
program are discussed. The mapping scheme
employed has to exhibit a strong locality effect
in order to allow efficient execution. We
assess the average number of instructions in
a cluster and the reduction in matching
operations compared with fine grain control
flow execution.

Medium grain execution can benefit from a
higher output bandwidth of a processor and
finally, a simple superscalar processor with an
issue rate of ten is sufficient to exploit the
internal parallelism of a cluster. Although the
technique does not exhaustively detect all
possible errors, it detects nontrivial errors with
a worst-case complexity quadratic to the
system size. It can be automated and applied
to systems with arbitrary loops and
nondeterminism.

How to Do a Bad Poster
David Patterson

University of California

Berkeley, CA 94720

DAP Nov.‘01 ©UCB 24

Outline

• Part I: Key Advice for a Bad Career while a Grad St udent
• Part II: Key Advice on Alternatives to a Bad Gradua te

Career
• Part III: Key Advice for a Bad Career, Post Ph.D.
• Part IV: Key Advice on Alternatives to a Bad Career , Post

Ph.D.
• Topics covered in Parts III and IV

– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring Technology

Page 13

DAP Nov.‘01 ©UCB 25

Alternatives to Bad Papers
• Do opposite of Bad Paper commandments

Define terms, distinguish “will do” vs “have done”,
mention drawbacks, real performance, reference othe r papers.

• Find related work via Melvyl/INSPEC
online search/paper retrieval vs. www only

www.dbs.cdlib.org

• First read Strunk and White, then follow these step s;
1. 1-page paper outline, with tentative page budget /section
2. Paragraph map

» 1 topic phrase/sentence per paragraph, handdrawn fi gures w. captions

3. (Re)Write draft
» Long captions/figure can contain details ~ Scientif ic American
» Uses Tables to contain facts that make dreary prose

4. Read aloud, spell check & grammar check
(MS Word; Under Tools, select Grammar, select Optio ns, select
“technical” for writing style vs. “standard”; selec t Settings and select)

5. Get feedback from friends and critics on draft; go to 3.

• www.cs.berkeley.edu/~pattrsn/talks/writingtips.html
DAP Nov.‘01 ©UCB 26

Alternatives to Bad Talks
• Do opposite of Bad Talk commandments

I. Thou shalt not illustrate.
II. Thou shalt not covet brevity.
III. Thou shalt not print large.
IV. Thou shalt not use color.
V. Thou shalt cover thy naked slides.
VI. Thou shalt not skip slides in a long talk.
VII. Thou shalt not practice.

• Allocate 2 minutes per slide, leave time for questi ons
• Don’t over animate
• Do dry runs with friends/critics for feedback,

– including tough audience questions

• Tape a practice talk (audio tape or video tape)
» Don’t memorize speech, but have notes ready

• Bill Tetzlaff, IBM: “Giving a first class ‘job talk’ is the single most
important part of an interview trip. Having someo ne know that
you can give an excellent talk before hand greatly increases the
chances of an invitation. That means great confere nce talks.”

Page 14

DAP Nov.‘01 ©UCB 27

Alternatives to Bad Posters (from Randy Katz)

• Answer Five Heilmeier Questions
1. What is the problem you are tackling?
2. What is the current state-of-the-art?
3. What is your key make-a-difference concept or te chnology?
4. What have you already accomplished?
5. What is your plan for success?

• Do opposite of Bad Poster commandments
– Poster tries to catch the eye of person walking by

• 9 page poster might look like
Problem
Statement

State-of-
the-Art

Key
Concept

Accomplish
-ment # 1

Title and
Visual logo

Accomplish
-ment # 2

Accomplish
-ment # 3

Plan for
Success

Summary &
Conclusion DAP Nov.‘01 ©UCB 28

AME is the 21st Century Challenge• Availability– systems should continue to meet quality of service goals despite hardware and software failures• Maintainability– systems should require only minimal ongoing human administration, regardless of scale or complexity: Today, cost of maintenance = 10X cost of purchase• Evolutionary Growth– systems should evolve gracefully in terms of performance, maintainability, and availability as they are grown/upgraded/expanded• Performance was the 20th Century Challenge– 1000X Speedup suggests problems are elsewhere
ROC: Recovery-Oriented ComputingAaron Brown and David PattersonROC Research Group, EECS Division, University of California at Berkeley For more info: http://roc.cs.berkeley.edu

Minute s o f Failure

People are the biggest challenge• People > 50% outages/minutes of failure– “Sources of Failure in the Public Switched Telephone Network,” Kuhn; IEEE Computer, 30:4 (Apr 97)– FCC Records 1992-1994; Overload (not sufficient switching to lower costs) + 6% outages, 44% minutesNum be r o f Outag e s

Hum an -comp an y

Hum an -exte rn a l

HW fa ilu res

Ac t o f Na ture

S W fa ilu re

Va nd a lis m

Recovery-Oriented Computing (ROC) Hypothesis
“If a problem has no solution, it may not be a problem,

but a fact, not to be solved, but to be coped with over time”
— Shimon Peres• Failures are a fact, and recovery/repair is how we cope with them• Improving recovery/repair improves availability– Availability = MTTF(MTTF + MTTR)– Since MTTF >> MTTR,1/10th MTTR just as valuable as 10X MTBF• Since major Sys Admin job is recovery after failure, ROC also helps with maintenanceROC Principles: (1) Isolation and redundancy• System is partitionable– to isolate faults– to enable online repair/recovery– to enable online HW growth/SW upgrade– to enable operator training/expand experience on portions of real system– Techniques: Geographically replicated sites, Shared-nothing cluster, Separate address spaces inside CPU• System is redundant– sufficient HW redundancy/data replication => part of system down but satisfactory service still available– enough to survive 2nd failure or more during recovery– Techniques: RAID-6; N-copies of data ROC Principles:(2) Online verification• System enables input insertion, output check of all modules (including fault insertion)– to check module operation to find failures faster– to test correctness of recovery mechanisms» insert faults and known-incorrect inputs» also enables availability benchmarks– to test if proposed solution fixed the problem» discover whether need to try another solution– to discover if warning systems are broken– to expose and remove latent errors from each system– to train/expand experience of operator– Techniques: Global invariants; Topology discovery; Program checking (SW ECC) ROC Principles: (3) Undo Support• ROC system should offer Undo– to recover from operator errors» undo is ubiquitous in productivity apps» should have “undo for maintenance”– to recover from inevitable SW errors» restore entire system state to pre-error version– to recover from operator training via fault-insertion– to replace traditional backup and restore– Techniques: Checkpointing; Logging; and time travel (log structured) file systems ROC Principles:(4) Diagnosis Support• System assists human in diagnosing problems– root-cause analysis to suggest possible failure points» track resource dependencies of all requests» correlate symptomatic requests with component dependency model to isolate culprit components– “health” reporting to detect failed/failing components» failure information, self-test results propagated upwards– unified status console to highlight improper behavior, predict failure, and suggest corrective action– Techniques: Stamp data blocks with modules used; Log faults, errors, failures and recovery methods Lessons Learned from Other Fields• 1800s: 25% railroad bridges failed!• Techniques invented since: – Learn from failures vs. successes – Redundancy to survive some failures– Margin of safety 3X-6X times calculatedload to cover what they don’t know• Safety now in Civil Engineering DNA– “Structural engineering is the science and art of designing and making, with economy and elegance, structures that can safely resist the forces to which they may be subjected”• Have we been building the computing equivalent of the 19th Century iron-truss bridges?– What is computer equivalent of safety margin? Recovery-Oriented Computing Conclusion• New century needs new research agenda – (and its not performance)• Embrace failure of HW, SW, people and still build systems that work• ROC: Significantly reducing Time to Recover/Repair => much greater availability + much lower maintenance costs Legendary great bird of Arab

folklore, the Rocis known to be of
such huge size that it can carry off
elephants and other great land
beasts with its large feet. Sinbad
the Sailor encountered such a bird
in The Thousand and One Nights.

Page 15

DAP Nov.‘01 ©UCB 29

One Alternative Strategy to a Bad Career

• Caveats:
– From a project leader’s point of view
– Works for me; not the only way
– Primarily from academic, computer systems perspecti ve

• Goal is to have impact:
Change way people do Computer Science & Engineering

– Academics have bad benchmarks: published papers

• 6 Steps
1) Selecting a problem
2) Picking a solution
3) Running a project
4) Finishing a project
5) Quantitative Evaluation
6) Transferring Technology

DAP Nov.‘01 ©UCB 30

1) Selecting a Problem
Invent a new field & stick to it?
• No! Do “Real Stuff”: solve problem

that someone cares about
• No! Use separate, short projects

– Always takes longer than expected
– Matches student lifetimes
– Long effort in fast changing field???
– Learning: Number of projects vs.

calendar time
– If going to fail, better to know soon

• Strive for multi-disciplinary,
multiple investigator projects

– 1 expert/area is ideal (no arguments)

• Match the strengths and
weaknesses of local environment

• Make sure you are excited enough
to work on it for 3-5 years

– Prototypes help

Page 16

DAP Nov.‘01 ©UCB 31

My first project
• Multiprocessor project with 3 hardware faculty (“Xtr ee”)
• 1977: Design our own instruction set, microprocesso r,

interconnection topology, routing, boards, systems,
operating system

• Unblemished Experience:
– none in VLSI
– none in microprocessors
– none in networking
– none in operating systems

• Unblemished Resources:
– No staff
– No dedicated computer (used department PDP-11/70)
– No CAD tools
– No applications
– No funding

• Results: 2 journal papers, 12 conference papers, 2 0 TRs
• Impact? DAP Nov.‘01 ©UCB 32

2) Picking a solution
Let Complexity Be Your Guide?

• No! Keep things simple unless a very
good reason not to

– Pick innovation points carefully, and
be compatible everywhere else

– Best results are obvious in retrospect
“Anyone could have thought of that”

• Complexity cost is in longer design,
construction, test, and debug

– Fast changing field + delays
=> less impressive results

Use the Computer Scientific Method?
• No! Run experiments to discover real

problems
• Use intuition to ask questions,

not answer them

Page 17

DAP Nov.‘01 ©UCB 33

(And Pick A Good Name!)

Reduced
I nstruction
Set
Computers

Redundant
Array of
I nexpensive
Disks

…

Recovery
Oriented
Computing

DAP Nov.‘01 ©UCB 34

Avoid Feedback?
• No! Periodic Project Reviews with

Outsiders
– Twice a year: 3-day retreat
– faculty, students, staff + guests
– Key piece is feedback at end
– Helps create deadlines, team spirit
– Give students chance to give

many talks, interact with others
industry

• Consider mid-course correction
– Fast changing field & 3-5 year

projects => assumptions changed

• Pick size and members of team
carefully
– Tough personalities are hard for

everyone
– Again, 1 faculty per area reduces

chance of disagreement

3) Running a project

P

Page 18

DAP Nov.‘01 ©UCB 35

• People count projects you finish,
not the ones you start

• Successful projects go through an
unglamorous, hard phase

• Design is more fun than making it
work

– “No winners on a losing team;
no losers on a winning team.”

– “You can quickly tell whether or not
the authors have ever built
something and made it work.”

• Reduce the project if its late
– “Adding people to a late project

makes it later.”

• Finishing a project is how people
acquire taste in selecting good
problems, finding simple solutions

4) Finishing a project

DAP Nov.‘01 ©UCB 36

5) Evaluating Quantitatively

Never be Proven Wrong?
• No! If you can’t be proven wrong,

then you can’t prove you’re right
• Report in sufficient detail for

others to reproduce results
– can’t convince others

if they can’t get same results

• For better or for worse,
benchmarks shape a field

• Good ones accelerate progress
– good target for development

• Bad benchmarks hurt progress
– help real users v. help sales?

Page 19

DAP Nov.‘01 ©UCB 37

6) Transferring Publishing Journal Papers IS
Technology Transfer?

• No! Missionary work: “Sermons”
first, then they read papers
– Selecting problem is key: “Real stuff”

» Ideally, more interest as time passes
» Change minds with believable results
» Prima Donnas interfere with transfer

• My experience: industry is reluctant
to embrace change
– Howard Aiken, circa 1950:

“The problem in this business isn’t to
keep people from stealing your ideas;
its making them steal your ideas!”

– Need 1 bold company (often not no. 1)
to take chance and be successful

» RISC with Sun, RAID with (Compaq,
EMC, …)

– Then rest of industry must follow
DAP Nov.‘01 ©UCB 38

6) Transferring Technology

• Pros
– Personal satisfaction:

seeing your product used
by others

– Personal $$$ (potentially)
– Fame

• Cons
– Learn about business plans,

sales vs. marketing,
financing, personnel
benefits, hiring, …

– Spend time doing above vs.
research/development

– Only 10% of startups really
make it

– Fame if company
unsuccessful too
(e.g., dot.com backlash)

Page 20

DAP Nov.‘01 ©UCB 39

Richard Hamming’s Advice: “You and Your Research”
(Latter in your Research Career)

• Doing Nobel Quality Research
– Search Google for transcript of 1986 talk at Bell L abs

• Luck? “Luck favors the prepared mind.” Pasteur
• Important Problems : “Great Thoughts Time” Friday afternoons
• Courage : think about important unsolved problems

– Big results usually to problems not recognized as s uch and people
usually did not get encouragement

• Working conditions : can use creatively to lead to original solutions
– Bell labs didn’t have acres of programmers

• Drive : what distinguishes the great scientists
– Not brains; commitment vs. dabbling; compound inter est over time

• Open doors (vs. closed offices): short term vs. long term bene fit
• Selling the work : not only published, but people must read it

– as much work spent on polish and presentation as on the work itself

• Age: After 1st big success, hard to work on small prob lems
– So change field at least every 10 years

• Educate your boss , Stimulation , right amount of Library work DAP Nov.‘01 ©UCB 40

Summary: Leader’s Role Changes during Project
P

Page 21

DAP Nov.‘01 ©UCB 41

Acknowledgments

• Many of these ideas were borrowed from (inspired by ?)
Tom Anderson, David Culler, Al Davis, Ken Goldberg,
John Hennessy, Steve Johnson, John Ousterhout,
Randy Katz, Bob Sproull, Carlo Séquin, Bill Tetzlaff
and many others

DAP Nov.‘01 ©UCB 42

Conclusion: Alternatives to a Bad Career

• Goal is to have impact:
Change way people do Computer Science & Engineering

– Many 3 - 5 year projects gives more chances for impa ct

• Feedback is key: seek out and value critics
• Do “ Real Stuff ”: make sure you are solving some problem

that someone cares about
• Taste is critical in selecting research problems, s olutions,

experiments, and communicating results;
– Taste acquired by feedback and completing projects

• Faculty real legacy is people, not paper:
– create environments that develop professionals of w hom you

are proud

• Students are the coin of the academic realm

Page 22

DAP Nov.‘01 ©UCB 43

Backup Slides to Help Answer
Questions

DAP Nov.‘01 ©UCB 44

Applying the Computer Scientific Method to OS

• Create private, highly tuned version for testing
– take out all special checks: who cares about crashe s during

benchmarks?

• Never give out code of private version
– might be embarrassing, no one expects it

• Run experiments repeatedly, discarding runs that do n’t
confirm the generic OS hypothesis

– Corollary

