Comparing TensorFlow 2.0 with PyTorch and
PyTorch JIT

Tim Lazarus

29 November, 2019

Comparing TensorFlow 2.0 with PyTorch and
PyTorch JIT

Tim Lazarus

29 November, 2019

Static Computation Graphs

In a static execution model, we define the graph structure at
compile time.

The graph then gets built and compile-time optimisations are
applied.

The same graph can be used multiple times.

TensorFlow is a prime example of a system with static
computation graphs.

Dynamic Computation Graphs

In dynamic execution models, the graph is defined as it is run.

This means the structure of the graph can be dependent on the
input.

This is exceptionally useful in the NLP domain, where loops in
graphs are common.

PyTorch is a prime example of a system with dynamic computation
graphs.

Example

A graph is created on the fly

W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(l, 10)

prev_h = torch.randn(1l, 20)

u}
o)
1
n
it

nac

Example

A graph is created on the fly

W h =
W x =

torch.randn (20, 20, requires_grad=True)
torch.randn (20, 10, requires_grad=True)
x = torch.randn(l, 10)

prev_h = torch.randn(1l, 20)

h2h = torch.mm(W_h, prev_h.t())

u}
o)
1
n
it

DA

Example

A graph is created on the fly

W h =
W x =

torch.randn (20, 20, requires_grad=True)
torch.randn (20, 10, requires_grad=True)
x = torch.randn(l, 10)

prev_h = torch.randn(1l, 20)

h2h
i2h

torch.mm(W_h, prev_h.t())
torch.mm(W_x, x.t())

u}
o)
1
n
it

DA

Example

A graph is created on the fly

W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(l, 10)

prev_h = torch.randn(1l, 20)

h2h = torch.mm(W_h, prev_h.t())
i2h = torch.mm(W_x, x.t())
next h = h2h + i2h

u}
o)
1
n
it

DA

Example

A graph is created on the fly

W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1l, 10)

prev_h = torch.randn(1l, 20)

h2h = torch.mm(W_h, prev_h.t())
i2h = torch.mm(W_x, x.t())
next_h = h2h + i2h

next_h = next_h.tanh()

u}
o)
1
n
it

DA

Example

A graph is created on the fly

W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(l, 10)

prev_h = torch.randn(1l, 20)

h2h = torch.mm(W_h, prev_h.t())
i2h = torch.mm(W_x, x.t())
next_h = h2h + i2h

next_h = next_h.tanh()

loss = next_h.sum() *

u}
o)
1
n
it

DA

Example

Back-propagation
uses the dynamically created graph
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)

x = torch.randn(l, 10)
prev_h = torch.randn(1l, 20)

h2h = torch.mm(W_h, prev_h.t())
i2h = torch.mm(W_x, x.t())
next_h = h2h + i2h

next_h = next_h.tanh()

loss = next_h.sum() *
loss.backward() # compute gradients! O

u}
o)
1
n
it

DA

PyTorch JIT

PyTorch actually has a Just in Time Compiler

At a basic level the JIT uses a subset of Python called Torch Script
to define graphs so certain optimisations are possible and for
increased portability.

For simple networks, this can be easily compiled using trace, but
for more complex graphs with control flow the user must directly
write in Torch Script.

The Project

TensorFlow 2.0, just introduced eager execution to compete with
PyTorch.

| wish to compare the performance between TensorFlow 2.0,
PyTorch and PyTorch with its JIT.

| would imagine that the JIT would outperform PyTorch, but | am
interested to see the difference in the other systems.

Questions?

