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Efficiency

Sequence of iterative placement improvements
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Generalizability

NN architecture that uses graph embedding to
encode the computation of graph structure in
the placement policy.
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GRAPH EMBEDDING
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Experimentation ﬁil:tt)hetlc data (cifar10, ptb,

Single GPU, Scotch, Human

Expert, RNN based approach.
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Placement runtime Training time Improvement
(sec) (# placements sampled)
CPU  Single RNN- RNN- Runtime  Speedup
Model only GPU #GPUs  Expert  Scotch  Placeto based Placeto based Reduction factor
. V3 D54 16 2 1.28 1.54 1.18 1.17 1.6 K 78K -0.85% 4.8 x
tion- . .
TP 4 115 174 113 119 | 58K 358K 5% 6.1
NMT Bs OOM 2 OOM OOM 232 2.35 204K 73K 1.3 % 3.5 X
' 4 OOM OOM 2.63 3.15 94K 517K 16.5 % 0.55 X
NASN o 128 2 0.86 1.28 0.86 0.89 35K 163K 3.4% 4.7 X
“ ' ' 4 0.84 1.22 0.74 0.76 29K 37K 2.6% 1.3 X
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Critic

+ First attempt to generalize device placement using a graph embedding network

+ Really Impressive performance
- Only optimizes placement decisions

- It shows generalization to unseen graphs, but they are generated artificially by
architecture search for a single learning task and dataset.

How does the framework handle failure. Evaluation protocol needs to be more
explicit.




