PLACETO: LEARNING GENERALIZABLE DEVICE PLACEMENT ALGORITHMS FOR DISTRIBUTED MACHINE LEARNING

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

Presented by: Obodoekwe Nnaemeka
Problem

Distributed training (GPU and CPU)

Human experts?

Reinforcement learning?
Problem

Sometimes tolerable. Solutions do not generalize

The optimization is done for a single graph. Single computational graph vs Class of computational graph
Placeto

Efficiency

Sequence of iterative placement improvements

Generalizability

NN architecture that uses graph embedding to encode the computation of graph structure in the placement policy.
Learning method

- Markov Decision Process
POLICY NETWORK ARCHITECTURE
GRAPH EMBEDDING
Training Details

Colocation

Simulator
Experimentation

Deep learning models (Inception-V3, NASNet, NMT)

Synthetic data (cifar10, ptb, nmt)

Single GPU, Scotch, Human Expert, RNN based approach.
Result

- Performance
- Generalizability
PLACETO VS RNN

<table>
<thead>
<tr>
<th>Model</th>
<th>Placement runtime (sec)</th>
<th>Training time (# placements sampled)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU only</td>
<td>Single GPU</td>
<td>#GPUs</td>
</tr>
<tr>
<td>Inception-V3</td>
<td>12.54</td>
<td>1.56</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td>NMT</td>
<td>33.5</td>
<td>OOM</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>OOM</td>
</tr>
<tr>
<td>NASNet</td>
<td>37.5</td>
<td>1.28</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.84</td>
</tr>
</tbody>
</table>
GENERALIZABILITY
GENERALIZABILITY
Place deep dive

Node traversal order

Alternative architectures

Simple aggregator

Simple partitioner
Critic

+ First attempt to generalize device placement using a graph embedding network

+ Really Impressive performance

- Only optimizes placement decisions

- It shows generalization to unseen graphs, but they are generated artificially by architecture search for a single learning task and dataset.

How does the framework handle failure. Evaluation protocol needs to be more explicit.