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Why 1s building
a query
optimiser hard?

Building a good optimiser today takes thousands of
person-engineering hours, and need to be tediously
maintained especially as the system's execution and
storage engines evolve

As a result, none of the freely available open-source query
optimisers come close to the performance of commercial
optimisers offered by IBM, Oracle or Microsoft

Introducing Neo.

The world's first entire learned query optimiser.

Saikia et al. Comparative Performance Analysis of MySQL and SQL Server...
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Neo

Model Building
Generates query Neo builds an initial Neo uses the value Using new queries,
execution plans from Value Model, a DNN model to search over the model is improved
a traditional query designed to predict the space of query tailored to the
optimizer the final execution execution plans. underlying database

time of a plan and execution engine.
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Join Graph

The first component encodes the joins performed by
the query, which can be represented as an adjacency

matrix of the join graph

Column Predicates

In Neo, three increasingly powerful variants are

supported.

1-hot
- Histogram

Query Encoding

- R-Vector

SELECT * FROM A, B, C, D WHERE
A.3=C.3 AND A.4=D.4 AND C.5=B.5
AND A.2<5 AND B.1=‘h';
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R-vector Featurisation

Purpose: To capture contextual cues
among values that appear in a database.

If a keyword “marvel-comics” shows up in a 20 @ Untedsutes 20
query predicate, then we wish to be able to B
predict what else in the database would be

relevant for this query (e.g., other Marvel movies).
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Row vectors are generated using word2vec, e S
concatenated with number of matched words, tSNEX
number of apperances in training and one-hot (a) Birthplace of each actor  (b) Top actors in each genre

encoding of the comparison operators

Variants: Joins & No-Joins



Plan level encoding

Represent the partial or complete query
execution plan, preserves the tree structure of
execution plans.

The vectors are created, bottom up, and first
store the different join types and then then the
type of scan (table, index or unspecified)

Purpose is to provide a representation of
execution plans to Neo's value network.
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Neo's network architecture

Plan-level Encoding
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Essentially large bank of optimal patterns that are learned automatically from the data itself, by taking
advantage of a technique called tree convolution.



Tree Convolution

Adaption of traditional 1image
convolution for
tree-structured data.

Tree convolution slides a set of
shared filters over each part of the
query locally, which can capture a
wide variety of local
parent-children relations.

FIGURE: EXAMPLE OF A TREE FILTER USED
TO DETECT TWO MERGE JOINS IN A ROW
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DNN-Guided Plan Search

Combine the value network with a search technique to generate query execution plans,
resulting in a value 1teration technique

Neo creates a min heap, ordered by the value network's estimation of a partial plan's cost

This heap is initialised with an unspecified scan for each element in each relation for the
glven query.

Neo iteratively explores the most promising node in the heap.

In the event that the time threshold is reached before a complete execution, Neo explores the
most promising child of the last node explored until a leaf is reached

Users can also opt for a 'anytime search' where the algorithms tries to find better results until
a fixed time cutoff



Experiments Setup

Three database benchmarks

JOB: Join order benchmark, with a set of queries over the IMDB dataset consisting of complex predicates, designed to
test query optimisers

TPC-H: standard database benchmark, suite of business oriented ad-hoc queries and concurrent data modifications.
Built to have broad industry-wide relevance.

Corp: 2TB dataset together with 8000 unique queries

Database engines: PostgreSQL, SQLite Microsoft SQL Server for Linux, Oracle 12c
Always used the PostgreSQL optimizer as the 'expert’

100 iterations of training



Results: Overall Performance

Neo is able to create plans
comparable to both open-source 108 Corporation

and commercial databases TPC-H
1.2 I ) T

FIGURE: MEDIAN RELATIVE QUERY
PERFORMANCE TO PLANS CREATED BY THE
NATIVE OPTIMIZER (LOWER IS BETTER)

Relative performance
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Results: Training Time
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Results: Training Time

Neural network time I
Query execution time
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Figure 11: Training time, in minutes, for Neo to match the
performance of PostgreSQL and each native optimizer.
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Limitations

A-prior1 knowledge

Requires knowledge about all possible query rewrite rules

Engine-specific

Optimizer does not yet generalize from one database to another, as the
features are specific to a set of tables

Query restrictions

Neo is restricted to project-select-equijoin-aggregate-queries

Requires a previous optimiser

Requires a traditional (weaker) query optimiser to bootstrap its learning
process.



Positives

¢ Really cool 1dea and 1t works™
e Extensive evaluation
e Avoid sample inefficiency

e Cost function flexibility

M. Schaarschmidt et al. Reinforcement Learning in Computer Systems by Learning From Demonstrations.



Criticism

e Training phase

Loses plug-and-play ability, long training times, R-vector training time
e Systems evaluation of the system
e Ambiguity of Experience
e Static cut-off point
e Error bars
e R-vectors aren't changed after training
e R-Vector assumptions

e They keep referencing a paper which I couldn't find



Related Work

Stillger et al. LEO - DB2's
LEarning Optimizer (2001)

Leo learns from its mistakes by adjusting its
cardinality estimations over time. It requires a
human-engineered cost model, a handpicked

search strateqgy, and developer-tuned heuristics.

Marcus et al. Deep
Reinforcement Learning for Join
Order Enumeration (2018)

Use reinforcement learning combined with a
human-engineered cost model to automatically
learn search strategies to explore the space of
possible join orderings.

Kraska et al. The Case for
Learned Index Structures (2018)

Using neural nets we are able to outperform
cache-optimized B-Trees by up to 70% in speed
while saving an order-of-magnitude in memory
over several real-world data sets.



Thanks for listening



How to optimise queries: Joins

SQL Server has 3 types of joins

1 Nested loops joins

If one join input is small (fewer
than 10 rows) and the other join
input is fairly large and indexed on
its join columns.

2 Hash joins

Hash joins can efficiently process

large, unsorted, nonindexed inputs.

3

Merge joins

If the two join inputs are not small
but are sorted on their join column
(for example, if they were obtained
by scanning sorted indexes), a
merge join is the fastest join
operation.

Microsoft Inc. Advanced Query Tuning Concepts



R-vector cardinality example

Table shows the similarity between the vectors for
keywords and genres and their true cardinalities in
the dataset.

PostgreSQL, with its uniformity and independence
assumptions always estimates the cardinalities for
the final joined result to be close to 1.

For the example query, Neo decided to use
hash joins instead of nested loop joins, and
as a result was able to execute this query
60% faster than PostgreSQL

love
love
love
fight
fight

Keyword | Genre | Similarity | Cardinality
romance 0.24 11128
action 0.16 2157
horror 0.09 1542
action 0.28 12177
romance 0.21 3592
horror 0.05 1104

fight

SELECT count (*)

FROM

title as t,
movie_keyword as mk,
keyword as k,
info_type as it,
movie_info as mi

WHERE it.id = 3

AND it.id = mi.info_type_id
AND mi.movie_id = t.id

AND mk.keyword_id = k.id

AND mk.movie_id = t.id

AND k.keyword ILIKE 'Jlove%'
AND mi.info ILIKE 'Y, romance}'




Results: Robustness
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