Existing Parallelisation Approaches (1/2)

DATA PARALLELISM
- Replica of neural network on each device
- Each device processes subset of training data
- After each iteration, parameters are synchronised
- Works well for compute-heavy operations with few parameters (e.g. convolutions)

MODEL PARALLELISM
- Disjoint subsets of neural network assigned to devices
- No parameter synchronisation, but requires data transfers between operations
Existing Parallelisation Approaches (2/2)

EXPERT-DESIGNED STRATEGIES

 • Data parallelism for convolutional layers, model parallelism for fully-connected layers

 • Data parallelism for compute nodes, model parallelism for intra-node computation

AUTOMATED FRAMEWORKS

 • Reinforcement learning for model parallelism

 • Dynamic Programming for parallelisation of DNNs with linear computation graphs

 • …
The SOAP Search Space

Samples (data parallelism)

Attributes (e.g. pixels)

Operators (model parallelism)

Parameters (≈model parallelism)
Hybrid Parallelism in SOAP

Example parallelization strategies for 1D convolution
FlexFlow

- Trying out strategies on hardware is expensive due to long iteration times
- Execution Optimizer uses simulator instead
 - Measures operator runtime on hardware
 - Estimates runtime of parallelisation strategies
 - Delta simulation algorithm uses incremental updates for acceleration
- Execution optimizer explores search space with Markov Chain Monte Carlo algorithm
Evaluation (1/2)

Figure 11: Comparison between the simulated and actual execution time for different DNNs and device topologies.

Figure 10: Comparison among the parallelization strategies found by different automated frameworks.
Evaluation (2/2)

Figure 9: Training curves of Inception-v3 in different systems. The model is trained on 16 P100 GPUs (4 nodes).
Review (1/2)

STRENGTHS/AGREEMENTS

• Expands search space for parallelisation strategies
• Proposes a way to efficiently explore that search space
• Leads to an actual speed-up

WEAKNESSES/DISAGREEMENTS

• Unclear how much SOAP and execution optimiser contribute to training acceleration
• Usefulness of Attribute dimension is questionable
• More end-to-end performance benchmarks would have been useful
Review (2/2)

KEY TAKEAWAYS

• Training performance of parallelisation strategies can be efficiently and accurately predicted
• The resulting speed-up allows for the exploration of a wider search space

POTENTIAL IMPACT

• Usage of other search algorithms to explore parallelisation search space in simulation
• Combination of parallelisation search space with computation graph substitutions (compare Tim’s presentation next week)
Questions?
Image Citations

Images with beige background retrieved from Jia Zhihao’s SysML 19 talk:
https://www.youtube.com/watch?v=8I6kkV-OkE

All other images extracted from Z. Jia, M. Zaharia, and A. Aiken: Beyond Data and Model Parallelism for Deep Neural Networks, SYSML, 2019.