RLgraph: Flexible Computation Graphs for Deep Reinforcement Learning

MICHAEL SCHAARSCHMIDT | SVEN MIKA | KAI FRICKE | EIKO YONEKI

PRESENTATION BY GRZEGORZ WILK
Background

Standardization of high-level graph frameworks is a big driving force behind the success of ML.

Yet, it is happening very slowly for reinforcement learning settings.

Examples include:

- OpenAI
- TensorForce
- Ray RLlib
What is reinforcement learning?

Instead of a supervised setting, where all the training data is available in advance,

Reinforcement learning revolves around defining a reward system for an agent and letting it freely produce strategies.
Separation of Concerns

- Managing trial runs in the testing environment
- Managing execution environment
 - Distributed coordination
 - Device strategies e.g. GPU utilization
- Driving the learning models
 - Logical component composition
 - Backend graph definition for specific frameworks
What does separation of logic achieve?

- Encourage code reuse
- Speed up iterative development
- Allow for sub-component testing
- Allow for a higher-level reasoning about the components
- Allow for identification of optimizations
Major contribution

Meta-graph.

This provides an abstraction that allows to compose various components of the reinforcement learning procedure and re-compose them in different ways.

Figure 9: TensorBoard visualization of RLgraph’s IMPALA learner. As all operations and variables are organized in components under separate scopes, dataflow between components is clear.
How is the meta graph created?

Three stages:

- Composing the components
- Traversing all the call paths to provide a skeleton of the meta-graph
- Building the backend-specific implementation, by allocating required data-structures and defining operations

* The framework also supports a define-by-run execution mode, where the third phase isn’t pre-build, instead dynamically created according to the shape of data passed around.

Figure 2. Example memory component with three API methods.
Conveniences provided

- Ability to test only parts of the meta-graph
- Convenient nesting, merging, splitting and folding of data passed around
- Shape and type checking
Backend independence

Figure 3. RL.graph execution stack.
Benchmarks

1s of build overhead. Performance wasn’t sacrificed in maintaining abstraction.

(a) Build overheads.

Figure 5. Distributed sample throughput on Pong.

Figure 8. IMPALA throughput comparison on seekavoid_arena_01
Critique

- Misleading to advertise a 180% speed-up on the front page compared to RLlib that is an optimization that could be incorporated into RLlib too.

- No comparison to other frameworks when driving multiple GPUs.

- No data to back up the claim that “overhead [in excessive call graph traversal while using PyTorch] becomes negligible as batch size increases and runtime is dominated by the network forward passes”.

- Nor is there any data presented on the “edge-contractions” which is the proposed mitigation of said issue.
fin