B UNIVERSITY OF
¥V CAMBRIDGE

NeuroEvolution of Augmenting Topologies (NEAT)
iIn TensorFlow Eager

Open Source Project

Cristian (cb2015@cam.ac.uk)

9= [$<-£
il i Buudsgio
$590XDS530%0 Wwiolsipjujolsip
favsid favsiq
9<-| | $<=f P9 |9<=§ | B8 | $<-T | b<-€ [pe=T | t<-1
0l 6 L 9 |E AN R uareq

i
i

§<-1
8 §

t

iolsip

E Pt pi * £ 0T DI
¢

b

9e1 | 5<£ | 1<y [9<5 [peb| st bt [Bemt| pe-t | [se-t [pes | se-t | pet | pet] pe-t
o [6 oo RS v c BREM t |8 s |]| cBEE

puarg [Juare]

P | b= | -1 [JudIRg

NEAT is a popular genetic algorithm that learns both the topology of a neural network

and the weights.

=

5%
£3
v
=)
==
Z <
59
SRR
7y -

HyperNEAT

Its variant, HyperNEAT is able to evolve Deep(er) Neural Networks with complex
structures similar to those in the brain.

C= } ~ 64
Z\\. Connections

Outputs:
Connection * - 4 O 9 6
Weights Connections

sfx UNIVERSITY OF
" CAMBRIDGE

NEAT is still a popular algorithm, widely used in the research community. It has 254
citations in 2018 and over 2000 since it was proposed.

_.lllllllllllll

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

However, there is no mature TensorFlow implementation because until recently.
TensorFlow did not support dynamic computation graphs.

=82 UNIVERSITY OF

%> CAMBRIDGE

NEAT: Not in TensorFlow Fold

UNIVERSITY OF

CAMBRIDGE

crisbodnar commented on 29 Oct)

Would it be possible to write an algorithm like NEAT which evolves the topology of a neural network in
Fold? From my understanding, Fold does not support dynamic computation graphs in this sense, but
these dynamic graphs are rather input dependent.

crisbodnar changed the title from implementation to gorithm implementation
s isbod h d the title f NEAT impl tation to NEAT Algorithm impl tati
on 29 Oct

& delesley commented on 29 Oct Collaborator

The original NEAT algorithm evolved small neural networks at the level of
individual neurons. That obviously won't work with tensorflow; calling a
python function to schedule a tensorflow operation to invoke a cuda kernel
to multiply two scalars would have ridiculously high overhead.

However, if you want to implement NEAT at the level of NN layers, rather
than individual neurons, then Tensorflow Fold should work quite well.
You'll want to use the loom library, not the blocks library.

First, create a separate LoomOp class for every NN operation you want to
support. Second, implement NEAT on a population of programs. Each program
in the population is a DAG of NN operations. Write a recursive python

function which traverses the DAG for every program in the population, and
invokes the appropriate LoomOp for each node. There is a calculator

example in loom that shows how to do this for arithmetic expressions. Loom
will handle the dynamic batching for you, and evaluate the LoomOps for all
programs using TensorFlow.

It might be easier to build a prototype using TensorFlow Eager, and then
switch to loom. Loom should give you a nice ~30x speedup over eager due to

dynamic batching.

-DelLesley

Project Goal

The goal of the project is to build an open source NEAT library in TensorFlow Eager
and compare its performance against the Uber Research PyTorch library.

s PYTHRCH

TensorFlow

=82 UNIVERSITY OF

%> CAMBRIDGE

Analyse the Uber Research PyTorch NEAT library and NEAT-Python.
Build vanilla NEAT in TensorFlow Eager.

Compare it against PyTorch on a simple RL task such as Cartpole.

If time allows it, other versions of NEAT such as HyperNEAT can be
implemented.

1.
2.
3.
4.

=82 UNIVERSITY OF

“§» CAMBRIDGE

The End

Thank you!
Questions?

=82 UNIVERSITY OF

%> CAMBRIDGE

