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Deep Learning - everywhere!

Old School: Today:

CPU

CPU

GPU

TPU



Fundamentally different memory architectures



Challenges for Generalized Deep Learning

● Numerous hardware devices 

○ GPUs, CPUs, TPUs, etc

● Bespoke low-level implementation needed to maximize efficiency 

on each ASIC/chip

● Many DL software solutions

○ Keras, TensorFlow, PyTorch, etc

● Lots of tuning

● Manual optimization is time intensive 



Current Optimization

● Keras

● TensorFlow

● MXNet

● Caffe

But graph 

optimization does not 

help low-level 

hardware efficiency!

Current architectures may perform 

high-level graph optimization and 

bespoke kernels



TVM
● Current SOA:

○ Each DL package implements bespoke code for kernels

○ High-level graph optim

● Goal: automate generation of optimized low-level code for many backends 

without human intervention by providing high-level (graph) and low-level 

optimizations

● Contributions

○ Graph Rewriter

○ Tensor Expression Language

○ Automated Program Optimization

○ Overall: automates time intensive process



TVM



Graph Level Modifications

● Operator Fusion

○ Combines many small ops

● Constant Folding

○ Pre-computes static graphs 

● Static Memory Planning Pass

○ Pre-allocates memory for needed tensors

● Data Layout Transformations

○ Optimize data storage for each backend 



● Operator Types 

○ One to one (addition)

○ Reduction (sum)

○ Complex-Out-Fusable (fuse element-wise)

○ Opaque (not-fusable)

● Specify rules for combining operators

● Avoids intermediate memory storage

Operator Fusion



Data Layout Transforms
● Many possible storage options

○ What does the kernel use? 4 x 4 matrix or length 16 vector?

● Considers hardware-preferred data layout and optimizes if possible

● Transforms data between producer and consumer if unequivalent

CPU TPU

Transforms if needed



Tensor Expression Language

● Specify products and operation, let TVM decide how to accomplish it

● Many schedules proposed, inefficient ones culled



Nested Parallelism and Tensorization

● Nested Parallelism

○ Explicit memory scopes enable multiple threads to share the same 

reference memory

○ Reduces fetch and mem transfer time 

● Tensorization (compute primitives for tensors)

○ Uses specific language

○ Extensible - just specify hardware and the data representation it 

wants



Latency Hiding

● Simultaneous memory and compute ops to maximize efficiency

● CPUs

○ Multithreading

● GPUs

○ Context switching

● TPUs

○ Decoupled access/execute

● Virtual threading to control latency hiding



Automated Program Optimization
● So many pieces of code and scheduling primitives!

● Adversarial System 

○ Part 1: Proposes new schedule configuration

○ Part 2: Predicts cost of proposed configuration



Automated Program Optimization

● Schedule Template Specification

○ Schedule = possible configuration

● One Hot Encoding of program features (loop elements, etc)

● Cost Model

● Simulated Annealing, Random Walks

● Gradient Tree Boosting

○ Input: Low Level Code

○ Output: Estimated (relative) time



Operator Fusion



Mem Loading



Speed Up



Conv Net Results



TVM MultiThread Capability



Mobile



VDLA/FPGA



Critique

● Good performance relative to baseline

● Not clear how much is actually novel

○ Other autotuners exist (ATLAS, FFTW, OpenTuner)

○ “Larger search space”

● Lack comparisons that actually demonstrate device generalizability that  

they seek

○ Should show TVM optimized systems vs. optimized package specific

● Automated work is sparse

○ Presented as “optimization with a side of automation” rather than 

an automation paper



Thank You!


