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Motivation

= Problem: Users struggle to write good features

= DNNs to rescue:
= perform well without any hand-engineered features

= State-of-the-art machine learning models require massive labeled training sets
= Often do not exist for real-world applications

= Hand-labeled training data is expensive and slow to collect

= A common scenario
= access to tons of unlabeled training data, and have some idea of how to label it programmatically

= Key idea: model the process of training set creation



Weak Supervision

= Generate training data using heuristics, rules-of-thumb, existing databases, ontologies, ...

= It isn't perfectly accurate, possibly consists overlapping and conflicting signals

= Sources of weak supervision
= Domain heuristics (e.g. common patterns, rules of thumb, etc.)

= Distant supervision - Existing ground-truth data that is not an exact fit for the specific task
= Weak classifiers (boosting)
= Unreliable non-expert annotators (e.g. crowdsourcing)

= Data programming (Ratner, Alexander J., et al., 2016)
= Domain experts encode various weak supervision signals as labeling functions

= These labeling functions can be noisy but can be reconciled and denoised automatically
= Used to train a discriminative model



Extracting Spouse Relations - Preprocessing

) Process documents into sentences and tokens

) Define Candidate Schema
Spouse = candidate_subclass('Spouse’, ['personl’, 'person2'])

) Define Candidate Extractor
J Named Entity Recognition - PersonMatcher

) Extract Candidate objects for all pairs of n-grams that were tagged as people
CandidateExtractor(Spouse, [ngrams, ngrams], [person_matcher, person_matcher])

) Apply Candidate Extractor to all preprocessed documents



Extracting spouse relations - Generating and
modeling noisy training labels

[} Create La beling Functions i Coverage Overlaps Conflicts
. . LF_distant ision 0 0001481 0.001481 0.000628
= Marks each Candidate as ‘true, ‘false’, or ‘abstain’ ~istant.stpervision
LF_distant_supervision_last_names 1 0.008080 0.007856 0.004758
= Pattern-based )
LF_husbhand_wife 2 0104642 0.066798 0.017867
* E.g. Checking whether the last names match LF_husband_wife_left window 3 0.078021 0.057910 0.010774
= Distant Supervision LF_same_last_name 4 0.016700 0.014994 0.010011
= E.g. DB of known spouse pairs LF_no_spouse_in_sentence 5 0.603026 0.081657 0.009472
Appl Il traini didat LF and_married 6 0.000673 0.000538 0.000404
[ |
pp y overa ralnlng Candidates LF_familial_relationship 7 0.104283 0.0914838 0.021413
- Flt the Generative Model LF_family_left window 8 0.073352 0.067651 0.012076
LF_other_relationship 9 0.009337 0.006868 0.001122

= Train a model of the LFs to estimate their accuracies
= Once the model is trained, outputs of the LFs are combined into a single, noise-aware training label set

[0.07592901, 0.07395425, 0.11954169, 0.11397737, 0.07065144,
0.6901572, 0.07358515, 0.15698341, 0.13658573, 0.08221857]



Extracting spouse re
modeling noisy traini

ations - Generating and
ng labels

Results on the dev set:
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Extracting spouse relations - Training an End
Extraction Mode

= Train a predictive model
= A state-of-the-art deep neural network

= Snorkel provides API for frameworks such as TensorFlow, PyTorch

= Uses probabilistic training labels from the generative model

= Binary output - spouse/non-spouse candidate




A
.r SNORKEL 1
We study a patient who became Document I
quadriplegic after parenteralmagnesium “ I
administration for preeclampsia. I SERESACE : .
: Span 1 '?L_ 4
UNLABELED DATA 1 Entity : "\( /
I A I =
I CONTEXT HIERARCHY ‘ MODEUNG ’
External : MLthmli OPTIMIZER " Nt
- | T eroagismc |
TRAINING DATA |
actionercs R | Patternc((8))causes (i) | i @
dictionaries 0" "amgravates”, I : @
| T | DISCRIMNATIVE
Domain B ﬁ i oA ] : GENERATIVE I MODEL
Heuristics I LABELING FUNCTION INTERFACE MODEL :



USER: SNORKEL:

= Provide unlabeled data = Creates a noisy training data
= Writes labeling functions = Learns a model of this noise
= Chooses a discriminative model " Trains a noise-aware discriminative model

(e.g. Bi-LSTM)




Generative Model or Majority Voting?
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improve end-to-end predictive performance?” | - _
0.20 - : " == Low-Density Bound
= Heuristic - ratio of positive to negative labels g ==~ Optimizer (A")
| i Optimal (A™)
m —
g 0.15 i i A Glen. Model (Ay)
AL :
S | ] ! M |
< 0.10 - | -I ,' \ |
g | B AR |
3 | N
Z 005 Low-Density : ; \\ : High-Density
(choose MV) | Mid-Density % Vo : (choose MV)
(choose GM) -
0.00 A
1 . ] -

10° 10! 10? 103
# of Labeling Functions



Correlated labels

= Snorkel users writing labeling functions that are statistically dependent.
= LF are variations of each other

" LF operate on correlated inputs
= LF use correlated sources of knowledge

= This affects estimates of the true labels

= Getting users to somehow indicate dependencies by hand is difficult and error-prone

= Pseudo-likelihood estimator
= Selecting which dependencies to model

= Hyper-parameter e: trades-off between predictive performance and computational cost
= Large e = no correlations included
= Choice of e determines the model’s complexity



Correlated labels
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Evaluation — User Study

= How quickly subject-matter experts could learn to write labelling functions

= 4.5 hours of instruction on how to use and evaluate models developed using Snorkel
= 2.5 hours to write labelling functions

= Snorkel users: 30.4 F1 average score

= The average hand-supervision: 20.9 F1 average score




Evaluation - Applications

Task # LFs % Pos. # Docs # Candidates
Chem 16 4.1 1,753 60,398
EHR 24 30.8 47,827 225,607
CDR 33 246 900 8.272
Spouses 11 8.3 2,073 22,195
Radiology 18 360 3,851 3.851
Crowd 102 . 505 505




Evaluation

Distant Supervision Snorkel (Gen.)
Task P R F1 P R F1 Lift
Chem 11.2 41.2 17.6 786 21.6 33.8 +16.2
EHR 81.4 64.8 722 7.1 729 749 2.7
CDR 25.0 34.8 294 52.3 304 38.5 +49.1
Spouses 9.9 34.8 154 53.5 62.1 57.4 +42.0

Snorkel (Disc.) Hand Supervision

P R F1 Lift P R F1

87.0 39.2 54.1 +436.5 - - .
80.2 826 8l4 +49.2 - - .
38.8 54.3 453 +15.9 39.9 581 47.3
48.4 61.6 54.2 +38.8 47.8 62.5 54.2




Effect of Generative Modeling

Disc. Model on

Task Unweighted LFs Disc. Model  Lift
Chem 48.6 54.1 5.5
EHR 80.9 81.4 +0.5
CDR 42.0 45.3 +3.3
Spouses 52.8 54.2 +1.4
Crowd (Acc) 62.5 65.6 +3.1
Rad. (AUC) 67.0 72.0 +5.0




Conclusion

= Snorkel provides a new paradigm for managing weak supervision to create training data sets

= Users provide Labeling Functions that capture domain knowledge and resources

= Discriminative models trained on Snorkel’s probabilistic labels produce consistently better
labeling

= Labeling functions written in Snorkel, even by SME users, can match or exceed a traditional
hand-labeling approach




Thank you!




