
Green-Marl
A DSL for Easy and Efficient
Graph Analysis
S. Hong, H. Chafi, E. Sedlar, K.Olukotun

R244

Michael Chi Ian Tang

1

Background

2

Background

• Graph Analysis - Extract information from a graph dataset

3

Background – Graph Analysis

Strongly Connected Components

4

Background – Graph Analysis

Conductance

5

Background – Graph Analysis

PageRank

6

Motivation

7

Motivation

• Large graph datasets

8

Motivation

• Intuitive Implementation vs Capturing Parallelism

9

Motivation

• Challenges - Capacity, Performance, Implementation

10

Green-Marl

11

Green-Marl

• DSL (Domain-specific language)
• Separation of programming and optimization

• Intuitive implementation of graph algorithms

• Exposes data-level parallelism

12

Green-Marl

• Simple language constructs
• Primitive types: Bool, Int, Long, Float, Double

• Graph types: Undirected, Directed

• Types bounded to graphs: Node, Edge

• Collection types: Set, Order, Sequence

• Traversal Schemes: BFS, DFS

13

Green-Marl

• Deferred assignment and Reductions

14

Optimizations & Compilation

15

Optimizations

• Architecture independent optimizations
• Loop Fusion, Hoisting Definitions, Reduction Bound Relaxation, Flipping Edges

16

Example of Flipping Edges Optimization

Optimizations

• Architecture dependent optimizations
• Selection of Parallel Regions, Deferred Assignment and Saving BFS Children,

Set-Graph Loop Fusion

17
Example of Set-Graph Loop Fusion Optimization

Compilation

• Into general-purpose languages, e.g. C++ (using graph library)

18

Experiments & Comparisons

19

Concise Representation

• Fewer lines-of-code (LOC) for many problems

20

Experiments

• Betweenness Centrality
• Compared to SNAP library

21

Experiments

• Conductance

22

• Vertex Cover

Critique

23

Major Contributions

1. Intuitive, concise implementation of algorithms

2. Transparent, automatic optimizations through compilation

3. Wider range of optimizations using domain-specific knowledge

4. Architecture-dependent optimizations

5. High architecture portability

6. Easy integration into current workflow

24

Criticism

1. Limited to graphs which fits into RAM

2. Backend optimized for CPU execution only

3. Limited comparison with related works

25

Conclusion

• A domain-specific language that is
• Portable

• Concise and intuitive

• Efficient

• Easy to integrate into workflow

• Require more work on
• Scalability

• Performance evaluation

26

