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Background
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Background

• Graph Analysis - Extract information from a graph dataset
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Background – Graph Analysis

Strongly Connected Components
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Background – Graph Analysis

Conductance
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Background – Graph Analysis

PageRank
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Motivation
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Motivation

• Large graph datasets
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Motivation

• Intuitive Implementation vs Capturing Parallelism
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Motivation

• Challenges - Capacity, Performance, Implementation
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Green-Marl
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Green-Marl

• DSL (Domain-specific language)
• Separation of programming and optimization

• Intuitive implementation of graph algorithms

• Exposes data-level parallelism
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Green-Marl

• Simple language constructs
• Primitive types: Bool, Int, Long, Float, Double

• Graph types: Undirected, Directed

• Types bounded to graphs: Node, Edge

• Collection types: Set, Order, Sequence

• Traversal Schemes: BFS, DFS
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Green-Marl

• Deferred assignment and Reductions
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Optimizations & Compilation
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Optimizations

• Architecture independent optimizations
• Loop Fusion, Hoisting Definitions, Reduction Bound Relaxation, Flipping Edges
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Example of Flipping Edges Optimization



Optimizations

• Architecture dependent optimizations
• Selection of Parallel Regions, Deferred Assignment and Saving BFS Children, 

Set-Graph Loop Fusion

17
Example of Set-Graph Loop Fusion Optimization



Compilation

• Into general-purpose languages, e.g. C++ (using graph library)
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Experiments & Comparisons
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Concise Representation

• Fewer lines-of-code (LOC) for many problems
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Experiments

• Betweenness Centrality
• Compared to SNAP library
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Experiments

• Conductance
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• Vertex Cover



Critique
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Major Contributions

1. Intuitive, concise implementation of algorithms

2. Transparent, automatic optimizations through compilation

3. Wider range of optimizations using domain-specific knowledge

4. Architecture-dependent optimizations

5. High architecture portability

6. Easy integration into current workflow
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Criticism

1. Limited to graphs which fits into RAM

2. Backend optimized for CPU execution only

3. Limited comparison with related works
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Conclusion

• A domain-specific language that is
• Portable

• Concise and intuitive

• Efficient

• Easy to integrate into workflow

• Require more work on
• Scalability

• Performance evaluation
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