
Designing Hybrid Data Processing
Systems for Heterogeneous Servers

Peter Pietzuch
Large-Scale Distributed Systems (LSDS) Group

Imperial College London
http://lsds.doc.ic.ac.uk
<prp@imperial.ac.uk>

University of Cambridge – Cambridge, United Kingdom – November 2017 1

Data is the New Oil

• Many new sources of data become available
– Most data is produced continuously

• Data powers plethora of new and personalised services…

2Peter Pietzuch - Imperial College London

Mobile
devices Scientific

instruments

CamerasSocial feeds IoT
devices

Internet services,
web sites

RFID
tags

Data
repositories

Data-Intensive Systems

• Data analytics over web click streams
– How to maximise user experience with

relevant content?
– How to analyse “click paths” to trace most

common user routes?

• Machine learning models for
online prediction
– E.g. serving adverts on search engines

Peter Pietzuch - Imperial College London 3

Hits

Page Views

Visits

Unique Visitors

Uniquely Identified Visitors

Volume of Available Data

…

f1

fn

y E {−1,1}

predict

update

• Solution: AdPredictor
– Bayesian learning algorithm

ranks adverts according to
click probabilities

Throughout and Result Freshness Matter

Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency

Peter Pietzuch - Imperial College London 4

…

High-throughput
processing

Low-latency
results

Data-intensive
system

Design Space for Data-Intensive Systems

• Tension between performance
and algorithmic complexity

Peter Pietzuch - Imperial College London 5

Easy for
most
algorithms

Hard for
machine
learning
algorithms

Hard for
all algorithms

Result latency

D
at

a
am

ou
nt

MBs

GBs

TBs

10s 1s 100ms 10ms 1ms

Algorithmic Complexity Increases

…
Share state

Aggregate

Iterate…

Pre-process

Parallelize
…

Online machine
learning, data

mining

Topic-
based
filtering

Content-
based
filtering

Complex
pattern

matching
Stream
queries

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

T1

T2

T3

T1(a, b, c)

T2(c, d, e)

T3(g, i, h)

Publish/Subscribe Complex Event
Processing (CEP)

Stream
processing

Peter Pietzuch - Imperial College London 6

Scale Out Model in Data Centres

Peter Pietzuch - Imperial College London 7

Task Parallelism vs. Data Parallelism

Peter Pietzuch - Imperial College London 8

Input data ...

Servers in
data centre

Results

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple data processing jobs

Data parallelism:
Single data processing job

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Distributed Dataflow Systems

• Idea:
Execute data-parallel tasks
on cluster nodes

• Tasks organised as dataflow graph

• Almost all big data systems do this:
• Apache Hadoop, Apache Spark,

Apache Storm, Apache Flink,
Google TensorFlow, ...

•
Peter Pietzuch - Imperial College London 9

parallelism
degree 3

parallelism
degree 2

Nobody Ever Got Fired For Using Hadoop/Spark

• 2012 study of MapReduce workloads
– Microsoft: median job size < 14 GB
– Yahoo: median job size < 12.5 GB
– Facebook: 90% of jobs < 100 GB

• Many data-intensive jobs easily fit into memory

• One server cheaper/more efficient than compute cluster

Peter Pietzuch - Imperial College London 10

(A. Rowstron, D. Narayanan, A. Donnely,
G. O’Shea, A. Douglas, HotCDP’12)

Parallelism of Heterogeneous Servers

Servers have many parallel CPU cores
Heterogeneous servers with GPUs common

New types of compute accelerators: Xeon Phi, Google's TPUs, FPGAs, ...
Peter Pietzuch - Imperial College London 11

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

L2 Cache

DRAM DRAM

SMX1 ... SMXN

So
ck

et
 1

So
ck

et
 2

Command Queue
PCIe Bus

DMA

1000s of
GPU cores

10s of
CPU cores

Slide courtesy of Torsten Hoefler (Systems Group, ETH Zürich)

Servers Are Becoming Increasingly Heterogeneous

Peter Pietzuch - Imperial College London 12

E How can Data-Intensive Systems Exploit Heterogeneous Hardware?

Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?

• (3) Experimental performance results

Peter Pietzuch - Imperial College London 13

Analytics with Window-based Stream Queries

• Real-time analytics over data streams
• Windows define finite data amount for processing

Peter Pietzuch - Imperial College London 14

window

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

now

Time-based window with size τ at current time t
[t - τ : t] Vehicles[Range τ seconds]

Count-based window with size n:
last n tuples Vehicles[Rows n]

Defining Stream Query Semantics

• Windows convert data streams to dynamic relations (database table)

Peter Pietzuch - Imperial College London 15

Streams Relations

Window specification

Stream operators:
Istream, Dstream, Rstream

Any relational
query

(select, project,
join, group by, etc)

SQL Stream Queries

SQL provides well-defined declarative semantics for queries
– Based on relational algebra (select, project, join, …)

• Example: Identify slow moving traffic on highway
– Input stream: Vehicles(highway, segment, direction, speed)
– Find highway segments with average speed below 40 km/h

Peter Pietzuch - Imperial College London 16

select highway, segment,
direction, AVG(speed) as avg

from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
having avg < 40

Input data

Output

Operators

(1) How to Parallelise Computation?

• Perform query evaluation across sliding windows in parallel
– Exploit data parallelism across stream

Peter Pietzuch - Imperial College London 17

123456

w1

w2

w3

w4

size: 4 sec
slide: 1 sec

How to use GPUs with Stream Queries?

• Naive strategy parallelises computation along window boundaries

Peter Pietzuch - Imperial College London 18

123456 size: 4 sec
slide: 1 sec

Task T1

Task T2

Combine partial results

E Window-based parallelism results in redundant computation

How to use GPUs with Stream Queries?

• Parallel processing of non-overlapping window data?

Peter Pietzuch - Imperial College London 19

w1

w2

w3

w4

123456 size: 4 sec
slide: 1 sec

T1

T2

T3

T4

T5

Combine partial results

E Slide-based parallelism limits degree of parallelism

Apache Spark: Small Slides à Low Throughput

• Spark relates window slide to micro-batch size used for parallelisation

Peter Pietzuch - Imperial College London 20

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut

(1
06

tu
pl

es
/s

)

Window slide (106 tuples)

select AVG(S.1) from S [rows 1024 slide x]

E Avoid coupling system parameters with query definition

SABER: Parallel Window Processing

• Idea: Parallelise using task size that is best for hardware

• Task contains one or more window fragments

Peter Pietzuch - Imperial College London 21

10 9 8 7 6 5 4 3 2 115 14 13 12 11 10 9 8 7 615 14 13 12 11

T1T2T3

w1
w2

w3
w4

w5

w1
w2

w3
w4

w5

size: 7 tuples
slide: 2 tuples

5 tuples/task

SABER: Window Fragment Processing

• Process window fragments in parallel
• Reassemble partial results to obtain overall result

Peter Pietzuch - Imperial College London 22

Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1
w1

w2
w3

w1
result

w2
result

Result stage
Slot 2 Slot 1

EmptyEmpty

Output result
circular buffer

Partial result reassembly must also be done in parallel

• Fragment function ff
– Processes window fragments

• Assembly function fa
– Merges partial window results

• Batch function fb
– Composes fragment functions within task
– Allows incremental processing

10 9 8 7 6 5 4 3 2 1

T1T2

w1
w2

size: 7 tuples
slide: 2 tuples

5 tuples/task

fa fa

ff ff

w2 results

ff ff

w1 results

output

fb

API for Operator Implementation

Peter Pietzuch - Imperial College London 23

SABER: Performance of Window-based Queries

Peter Pietzuch - Imperial College London 24

0

0.05

0.1

0.15

0.2

0

2

4

6

8

64 256 1024 4096 16384

La
te

nc
y

(s
ec

)

Th
ro

ug
hp

ut
 (G

B/
s)

Window slide (tuples)

select AVG(S.1) from S [rows 1024 slide x]

E Performance of window-based queries remains predictable

0

2

4

6

8

0.0625 0.25 1 4 16 64 256 1024 4096

Th
ro

ug
hp

ut
 (G

B/
s)

Task Size (KB)

CPU-only processing

GPU-only processing

How to Pick the Task Size?

• Problem: Small data transfers over PCIe bus costly
– Example: select * from S where p1 [rows 1 slide 1]

Limited by dispatcher
and thread contention

Limited by data
movement

Peter Pietzuch - Imperial College London 25

Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?

Peter Pietzuch - Imperial College London 26

E Avoid coupling system parameters with processing semantics

(2) How to Utilise Heterogeneous Servers?

• Hard to decide acceleration potential of heterogeneous processors
– Depends on operator semantics, window definition,

data distribution, …

Peter Pietzuch - Imperial College London 27

E Don’t leave decision about heterogeneous processors to users

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

0

0.1

0.2

0.3 CPU execution

GPU execution

Aggregation Group-by θ-join

GPU is faster CPU is faster

SABER: Hybrid Execution Model

• Idea: Execute tasks on all heterogeneous processors (CPUs, GPUs, ...)

• Fully utilise all hardware parallelism available in dedicated servers

Peter Pietzuch - Imperial College London 28

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task queue CPU worker

GPU worker

0 3 6 9 12

CPU
GPU T1 T2

T3

T2T1 T4 T5 T6

T7

T8 T9

T10

T4 T5 T6

Static Task Scheduling using Cost Model?

Peter Pietzuch - Imperial College London 29

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task queue

T2

T1

CPU
GPU

Static: QA on CPU and QB on GPU

T7 T9 T10

T3 T4 T5 T6 T8

0 3 6 9 12

CPU workers

GPU worker

E Static scheduling under-utilises processors

• Profile tasks to obtain cost model
• Assign tasks to processor with shortest execution time

First-Come First-Serve Task Scheduling?

Peter Pietzuch - Imperial College London 30

E FCFS ignores effectiveness of processors for given task

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task queue CPU workers

GPU worker

0 3 6 9 12

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

• Assign tasks to processors first-come, first-serve
– CPU/GPU execute both QA and QB tasks

Heterogeneous Lookahead Scheduling (HLS)

Idea: Scheduler assigns tasks to idle processors dynamically
– Skips tasks that could be executed faster by another processor

Peter Pietzuch - Imperial College London 31

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task queue CPU workers

GPU worker

0 3 6 9 12

CPU
GPU

HLS

T1 is slower on CPU: Skip

T1

T2 is slower on CPU: Skip

T2

T3 is slower on CPU but already have 3 ms of work for GPU

T3

T2T1

Skip T4, T5 and T6 and select T7

T4 T5 T6

T7

Finally skip T8 and T9 and select T10

T8 T9

T10

T4 T5 T6

E HLS achieves aggregate throughput of all heterogeneous processors

SABER Hybrid Stream Processing Engine

Peter Pietzuch - Imperial College London 32

T1

T2

T2 T1

op

αα
op

CPU

GPU

T1 T2

Scheduling & execution stage
Dequeue tasks
based on HLS

Dispatching stage
Dispatch
fixed-size tasks

Merge & forward partial
window results

Result stage

Java
15K LOC

C & OpenCL
4K LOC

Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?

• (3) Experimental performance results

Peter Pietzuch - Imperial College London 33

E Hybrid execution utilises all heterogeneous processors

E Avoid coupling system parameters with processing semantics

Experimental Evaluation

Peter Pietzuch - Imperial College London 34

Ubuntu Linux 14.04 NVIDIA driver 346.47

Intel Xeon
2.6 GHz

NVIDIA Quadro
K5200

PCIe 3.0 x16

10 Gbps
NIC

16
cores

64 GB
RAM

2,304
cores

8 GB
RAM

Google Cluster Data
144M jobs events from Google infrastructure

SmartGrid	Measurements
974M	plug	measurements	from	houses

Linear	Road	Benchmark
11M	car	positions	and	speed	on	highway

What is SABER’s Performance?

Peter Pietzuch - Imperial College London 35

0

10

20

30

40

50

CM2 SG1 SG2 LRB3 LRB4Th
ro

ug
hp

ut
 (1

06
tu

pl
es

/s
)

SABER (CPU contrib.)

SABER (GPU contrib.)

Cluster Mgmt. Smart Grid LRB

aggravg group-byavg select

group-byavg group-bycnt

group-bycntgroup-byavg

select

Intel Xeon 2.6 GHz

NVIDIA Quadro K5200

16 cores

2,304 cores

E SABER exploits both CPUs and GPUs effectively for different queries

Is Hybrid Throughput Additive?

Peter Pietzuch - Imperial College London 36

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

0

0.1

0.2

0.3 SABER (CPU only)
SABER (GPU only)
SABER

Aggregation Group-by θ-join

GPU is faster CPU is faster Not additive due to queue
contention

E Aggregate throughput of CPU + GPU always highest

What is the Trade-Off between CPUs and GPUs?

• Hybrid processing model benefits from GPU's ability to process complex
predicates fast

0

2

4

6

8

1 4 16 64

Th
ro

ug
hp

ut
 (G

B/
s)

selection predicates

SABER (CPU only) SABER (GPU only) SABER

Dispatch
bound

0

0.1

0.2

0.3

0.4

1 4 16 64
join predicates

[rows 1024, slide 1024] [rows 1024, slide 1024]

Peter Pietzuch - Imperial College London 37

Does SABER Adapt to Workload Changes?

38

0

0.1

0.2

0 10 20 30 40 50 60

Se
lec

tiv
ity

0

2

4

6

8

0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (G

B/
s)

Time (seconds)

Series1 Series2SABER SABER (GPU contribution)

HLS periodically uses idle, non-preferred processor to run
tasks to update query task throughput matrix

E Higher selectivity à more predicates evaluated à GPU preferred
Peter Pietzuch - Imperial College London

Summary

• Heterogeneous servers have huge impact on data-intensive systems
– Shift from scale out to scale up model
– Need new general-purpose system designs for heterogeneous servers

☛SABER: Hybrid Stream Processing Engine for CPUs & GPUs

• (1) Parallelise computation to fit hardware capabilities
E Decouple hardware/system parameters from processing semantics

• (2) Fully utilise all heterogeneous processors independently of workload
E Hybrid processing model to achieve aggregate CPU/GPU throughput

39Peter Pietzuch - Imperial College London

Acknowledgement:
LSDS Group at Imperial College London

Peter Pietzuch - Imperial College London 40

Peter Pietzuch
http://lsds.doc.ic.ac.uk
<prp@imperial.ac.uk>Thank you!

Any Questions?

We're Hiring!
Post-docs, PhDs

