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Data is the New Oil

• Many new sources of data become available
– Most data is produced continuously

• Data powers plethora of new and personalised services…

2Peter Pietzuch - Imperial College London

Mobile
devices Scientific

instruments

CamerasSocial feeds IoT
devices

Internet services,
web sites

RFID
tags

Data
repositories



Data-Intensive Systems

• Data analytics over web click streams
– How to maximise user experience with

relevant content?
– How to analyse “click paths” to trace most

common user routes?

• Machine learning models for
online prediction
– E.g. serving adverts on search engines
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Throughout and Result Freshness Matter

Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency
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Design Space for Data-Intensive Systems

• Tension between performance
and algorithmic complexity
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Algorithmic Complexity Increases
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Scale Out Model in Data Centres
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Task Parallelism vs. Data Parallelism
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Input data ...

Servers in
data centre

Results

select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple data processing jobs

Data parallelism:
Single data processing job

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40



Distributed Dataflow Systems

• Idea:
Execute data-parallel tasks
on cluster nodes

• Tasks organised as dataflow graph

• Almost all big data systems do this:
• Apache Hadoop, Apache Spark, 

Apache Storm, Apache Flink,
Google TensorFlow, ...

•
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Nobody Ever Got Fired For Using Hadoop/Spark

• 2012 study of MapReduce workloads
– Microsoft: median job size < 14 GB
– Yahoo: median job size < 12.5 GB
– Facebook: 90% of jobs < 100 GB

• Many data-intensive jobs easily fit into memory

• One server cheaper/more efficient than compute cluster
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Parallelism of Heterogeneous Servers

Servers have many parallel CPU cores
Heterogeneous servers with GPUs common

New types of compute accelerators: Xeon Phi, Google's TPUs, FPGAs, ...
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Slide courtesy of Torsten Hoefler (Systems Group, ETH Zürich)

Servers Are Becoming Increasingly Heterogeneous
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E How can Data-Intensive Systems Exploit Heterogeneous Hardware?



Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?

• (3) Experimental performance results
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Analytics with Window-based Stream Queries

• Real-time analytics over data streams
• Windows define finite data amount for processing

Peter Pietzuch - Imperial College London 14

window

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

now

Time-based window with size τ at current time t
[t - τ : t] Vehicles[Range τ seconds]

Count-based window with size n:
last n tuples Vehicles[Rows n]



Defining Stream Query Semantics

• Windows convert data streams to dynamic relations (database table)
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SQL Stream Queries

SQL provides well-defined declarative semantics for queries
– Based on relational algebra (select, project, join, …)

• Example: Identify slow moving traffic on highway
– Input stream: Vehicles(highway, segment, direction, speed)
– Find highway segments with average speed below 40 km/h
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select highway, segment, 
direction, AVG(speed) as avg

from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
having avg < 40

Input data

Output

Operators



(1) How to Parallelise Computation?

• Perform query evaluation across sliding windows in parallel
– Exploit data parallelism across stream
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How to use GPUs with Stream Queries?

• Naive strategy parallelises computation along window boundaries

Peter Pietzuch - Imperial College London 18

123456 size: 4 sec
slide: 1 sec

Task T1

Task T2

Combine partial results

E Window-based parallelism results in redundant computation



How to use GPUs with Stream Queries?

• Parallel processing of non-overlapping window data?
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Apache Spark: Small Slides à Low Throughput

• Spark relates window slide to micro-batch size used for parallelisation
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select AVG(S.1) from S [rows 1024 slide x]

E Avoid coupling system parameters with query definition



SABER: Parallel Window Processing

• Idea: Parallelise using task size that is best for hardware

• Task contains one or more window fragments
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SABER: Window Fragment Processing

• Process window fragments in parallel
• Reassemble partial results to obtain overall result
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• Fragment function ff
– Processes window fragments

• Assembly function fa
– Merges partial window results

• Batch function fb
– Composes fragment functions within task
– Allows incremental processing

10 9 8 7 6 5 4 3 2 1

T1T2

w1
w2

size:  7 tuples
slide: 2 tuples

5 tuples/task

fa fa

ff ff

w2 results

ff ff

w1 results

output

fb

API for Operator Implementation
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SABER: Performance of Window-based Queries
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E Performance of window-based queries remains predictable
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• Problem: Small data transfers over PCIe bus costly
– Example: select * from S where p1 [rows 1 slide 1] 
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and thread contention
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Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?
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E Avoid coupling system parameters with processing semantics



(2) How to Utilise Heterogeneous Servers?

• Hard to decide acceleration potential of heterogeneous processors
– Depends on operator semantics, window definition, 

data distribution, …
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E Don’t leave decision about heterogeneous processors to users
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SABER: Hybrid Execution Model

• Idea: Execute tasks on all heterogeneous processors (CPUs, GPUs, ...)

• Fully utilise all hardware parallelism available in dedicated servers
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Static Task Scheduling using Cost Model?
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E Static scheduling under-utilises processors

• Profile tasks to obtain cost model
• Assign tasks to processor with shortest execution time



First-Come First-Serve Task Scheduling?
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E FCFS ignores effectiveness of processors for given task
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• Assign tasks to processors first-come, first-serve
– CPU/GPU execute both QA and QB tasks



Heterogeneous Lookahead Scheduling (HLS)

Idea: Scheduler assigns tasks to idle processors dynamically
– Skips tasks that could be executed faster by another processor
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E HLS achieves aggregate throughput of all heterogeneous processors



SABER Hybrid Stream Processing Engine
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Roadmap

• SABER: Hybrid stream processing engine for heterogeneous servers
• [SIGMOD’16]

• (1) How to parallelise computation on modern hardware?

• (2) How to utilise heterogeneous servers?

• (3) Experimental performance results
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E Hybrid execution utilises all heterogeneous processors

E Avoid coupling system parameters with processing semantics



Experimental Evaluation
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What is SABER’s Performance?
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Is Hybrid Throughput Additive?
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What is the Trade-Off between CPUs and GPUs?

• Hybrid processing model benefits from GPU's ability to process complex 
predicates fast
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Does SABER Adapt to Workload Changes?
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E Higher selectivity à more predicates evaluated à GPU preferred
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Summary

• Heterogeneous servers have huge impact on data-intensive systems
– Shift from scale out to scale up model
– Need new general-purpose system designs for heterogeneous servers

☛SABER: Hybrid Stream Processing Engine for CPUs & GPUs

• (1) Parallelise computation to fit hardware capabilities
E Decouple hardware/system parameters from processing semantics

• (2) Fully utilise all heterogeneous processors independently of workload
E Hybrid processing model to achieve aggregate CPU/GPU throughput
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