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Recurrent Neural Networks
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Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:
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Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:
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Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō
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Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:
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Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:
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2Images taken from [5] and [6] 



Sentiment Analysis
• Make out the general sentiment 

of a sentence.


• Based word vectors, ngrams, 
word embeddings, etc.


• Binary or Multiclass classification 
in different sentiments.
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Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.
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Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1
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) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
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Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E
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but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
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Where �, g and h are point-wise non-linear activation functions.
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Where �, g and h are point-wise non-linear activation functions.
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function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō
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Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:
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Then the vector formulas for a vanilla LSTM layer forward
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Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:
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Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:
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Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:
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�ō

t = �y

t � h(ct) � �

0(ōt)
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t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī
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the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī
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PyTorch vs. TensorFlow

• Python implementation of Torch 
(Lua)


• Imperative programming model


• Great integration with Python


• Beta version


• CPU, GPU


• Facebook, CMU, Stanford, NYU, 
ParisTech, ENS, …

• Multiple frontends: C++, Python, 
Java, Go


• Declarative API


• Imperative API through Eager [3]


• Data Flow graphs, with partial graph 
execution


• CPU, GPU, TPU, Mobile (TensorFlow 
Lite)


• Google, AirBnb, Uber, SAP, ebay, Intel

4Images taken from [1] and [2]



Significance
• Research:


• Prominent Question: Have you tried using DNN?


• Programming paradigm is shifting


• Induction, data-centric approach


• TensorFlow and PyTorch are among the primary tools used 
by the industry and academia


• RNNs are great for data with temporal relations (e.g. text, 
speech)
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Exploration
• Evaluate how the top 2 Deep Learning Frameworks perform in 

CPU-only computations


• Lack of available Nvidia GPU :(


• and a Google TPU :(


• Maybe test on Public Cloud - Amazon Spot Instances?


• Can you do “Deep” learning on CPUs?


• Explore the limits on a “commodity” laptop


• How far can “fast-prototyping” go?
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Working Plan

• So far:


• Tools installations and 
playground setup


• Dataset exploration


• API familiarisation

Today Christmas Deadline
16/0128/11

• Deliverables:


• Different RNN depths and 
architectures  comparative 
benchmarks


• Accuracy benchmarks


• Computability benchmarks


• Results interpretation
7



Thank you
Q&A

Stefanos Laskaridis 
sl829@cam.ac.uk
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