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Deep Neural Networks

e Recent successes in using Deep neural networks for image classification,
reinforcement learning etc.
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Another view of GoogleNet's architecture.



But why do they work?

e Lack of theoretical understanding of the functions a Deep Neural network is able to compute
e Some work into shallow networks
o Universal approximation results (Hornik et al., 1989; Cybenko, 1989)
o  Expressivity comparisons to boolean circuits (Maass et al., 1994)
e Some work into deep networks
o Establishing lower bounds on expressivity
m E.g. Pascanu et al., 2013; Montufar et al., 2014  wWT(F4, ([0,1; W)} < T(Fa,([0,1]; W)
o But previous approaches use hand-coded constructions of specific network weights
o Functions studies are unlike those learned by networks trained in real life
e Lacking:
o Good understanding of “typical” case
o Understanding of upper bounds
m Do existing constructions approach the upper bound of expressive power of neural
networks?



Contributions

e Measures of expressivity to capture expressive power of architecture

e Activation Patterns
o Tight upper bounds on the number of possible activation patterns

e Trajectory length
o Exponential growth in trajectory length as function of depth of network
o small adjustments in parameters lower in the network can result in large
changes later

o Trajectory Regularization
e Batch normalization works to reduce trajectory length

e \Why not directly regularize on trajectory length?



Expressivity

e Given architecture A, associated function Fa(x; W)

e Goal:
o How does this function change as A changes for values of W encountered in training, across
inputs x
e Difficulty:

o High dimensional input, quantifying F over input space is intractable

e Alternative:
o Study one dimensional trajectories through input space



Trajectory

Definition: Given two points, xg,21 € R™, we say z(t)
is a trajectory (between zg and z) if z(t) is a curve
parametrized by a scalar ¢ € [0,1], with (0) = z( and
a(1) = =4,

Some trajectories:

o Linex(t)=tx1+(1-1)x0
e Circular arc x(t) = cos(mt/2)x0 + sin(Trt/2)x1
e May be more complicated, and possibly not expressible in closed form



Measures of Expressivity: Neuron Transitions

Given network with piecewise linear activations (e.g. ReLU, hard tanh), the
function it computes is also piecewise linear
Measure expressive power by counting number of linear pieces

Change in linear region caused by a neuron transition
o transitions between inputs x, x + & if activation switches linear region between x and x + 8.
o E.G. ReLU from off to on or vice versa
o Hard tanh from -1 to linear middle region to saturation at 1

For a trajectory x(t), can define 7(Fa(z(t); W)) as the number of transitions
undergone by output neurons as we sweep the input along x(t)



Measures of Expressivity: Activation Pattern

Activation pattern AP (F,(z; W))

e A String of length number of neurons from set

o {0, 1} for ReLUs
o {-1,0, 1} for hard tanh

e Encodes the linear region of the activation function of every neuron, for an
input x and weights W

Can also define A(F4(z(t); W)) the number of distinct activation patterns as we
sweep x along x(t)

e Measures how much more expressive A is over a simple linear mapping



Upper Bound for Number of Activation Patterns

Theorem 1. (Tight) Upper Bound for Number of Activa-
tion Patterns Let A, i) denote a fully connected network
with n hidden layers of width k, and inputs in R™. Then the
number of activation patterns A(Fa,, , (R™; W) is upper
bounded by O(k™™) for ReLU activations, and O((2k)™™)
for hard tanh.



Trajectory transformation exponential with depth

Trajectory i ' ith the depth of twork
e Trajectory increasing wi e depth of a networ 'Q ,&i;f ‘fﬁ}” @ *

Definition: Given a trajectory, x(t), we define its length,
[(z(t)), to be the standard arc length:

I(z(t)) = / 20t H dt

dt
e Image of the trajectory in layer d of the network  z(@(z(t)) = 2(4)(¢)

e Proved that For a fully connected work with

o n hidden layers each of width k d
o  Weights ~N(0, ow2/k) E [I.[z':‘“(tj}] >0 ( 7wV ) Uz(t))
o Biases ~N(0, ob2) \Jo2 + ot +ky/at + oF

Sfor hard tanh



Number of transitions is linear in trajectory length
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Early layers most susceptible to noise
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Early layers most important in training

Accuracy

Test Accuracy Against Epoch
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Trajectory Regularization

e Higher trajectory, higher expressive ability

e But also more unstable
e Regularization seems to be controlling trajectory length
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Trajectory Regularization

add to the loss A(current length/orig length)

Replaced each batch norm layer of the
CIFAR10 conv net with a trajectory
regularization layer
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Contributions

e Measures of expressivity to capture expressive power of architecture

e Activation Patterns
o Tight upper bounds on the number of possible activation patterns

e Trajectory length
o Exponential growth in trajectory length as function of depth of network
o small adjustments in parameters lower in the network can result in large
changes later

o Trajectory Regularization
e Batch normalization works to reduce trajectory length

e \Why not directly regularize on trajectory length?



Conclusions

e This paper equips us with more formal tools for analyzing the expressive
power of networks

e Better understanding of importance of early layers: how and why

e Trajectory regularization is an effective technique, grounded in notion of
expressivity

e Further work needed investigating trajectory regularization

e Trajectory has possible implications for understanding adversarial examples



