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Deep Neural Networks 
● Recent successes in using Deep neural networks for image classification, 

reinforcement learning etc. 

f(        ) = cat



But why do they work?
● Lack of theoretical understanding of the functions a Deep Neural network is able to compute
● Some work into shallow networks    

○ Universal approximation results (Hornik et al., 1989; Cybenko, 1989)
○ Expressivity comparisons to boolean circuits (Maass et al., 1994)

● Some work into deep networks
○ Establishing lower bounds on expressivity

■ E.g. Pascanu et al., 2013; Montufar et al., 2014
○ But previous approaches use hand-coded constructions of specific network weights
○ Functions studies are unlike those learned by networks trained in real life

● Lacking:
○ Good understanding of “typical” case 
○ Understanding of upper bounds 

■ Do existing constructions approach the upper bound of expressive power of neural 
networks? 



Contributions
● Measures of expressivity to capture expressive power of architecture
● Activation Patterns

○ Tight upper bounds on the number of possible activation patterns 
● Trajectory length

○ Exponential growth in trajectory length as function of depth of network
○ small adjustments in parameters lower in the network can result in large 

changes later
○ Trajectory Regularization

● Batch normalization works to reduce trajectory length
● Why not directly regularize on trajectory length?



Expressivity
● Given architecture A, associated function
● Goal: 

○ How does this function change as A changes for values of W encountered in training, across 
inputs x

● Difficulty: 
○ High dimensional input, quantifying F over input space is intractable

● Alternative: 
○ Study one dimensional trajectories through input space



Trajectory

Some trajectories: 

● Line x(t) = tx1 + (1 - t) x0
● Circular arc x(t) = cos(πt/2)x0 + sin(πt/2)x1
● May be more complicated, and possibly not expressible in closed form 



Measures of Expressivity: Neuron Transitions
● Given network with piecewise linear activations (e.g. ReLU, hard tanh), the 

function it computes is also piecewise linear
● Measure expressive power by counting number of linear pieces 
● Change in linear region caused by a neuron transition

○ transitions between inputs x, x + δ if activation switches linear region between x and x + δ.
○ E.G. ReLU from off to on or vice versa
○ Hard tanh from -1 to linear middle region to saturation at 1

● For a trajectory x(t), can define                       as the number of transitions 
undergone by output neurons as we sweep the input along x(t)



Measures of Expressivity: Activation Pattern
Activation pattern 

●  A String of length number of neurons from set
○ {0, 1} for ReLUs
○ {−1, 0, 1} for hard tanh 

● Encodes the linear region of the activation function of every neuron, for an 
input x and weights W

Can also define                          the number of distinct activation patterns as we 
sweep x along x(t)

● Measures how much more expressive A is over a simple linear mapping



Upper Bound for Number of Activation Patterns



Trajectory transformation exponential with depth
● Trajectory increasing with the depth of a network

● Image of the trajectory in layer d of the network
● Proved that For a fully connected work with

○ n hidden layers each of width k
○ Weights ∼N(0, σw2/k)
○ Biases ∼N(0, σb2 )



Number of transitions is linear in trajectory length



Early layers most susceptible to noise 

A perturbation at a layer grows 
exponentially in the remaining 
depth after that layer. 



Early layers most important in training



Trajectory Regularization
● Higher trajectory, higher expressive ability
● But also more unstable
● Regularization seems to be controlling trajectory length 

Wrong axis labels → 



Trajectory Regularization
● add to the loss λ(current length/orig length)

● Replaced each batch norm layer of the 
CIFAR10 conv net with a trajectory 
regularization layer



Contributions
● Measures of expressivity to capture expressive power of architecture
● Activation Patterns

○ Tight upper bounds on the number of possible activation patterns 
● Trajectory length

○ Exponential growth in trajectory length as function of depth of network
○ small adjustments in parameters lower in the network can result in large 

changes later
○ Trajectory Regularization

● Batch normalization works to reduce trajectory length
● Why not directly regularize on trajectory length?



Conclusions
● This paper equips us with more formal tools for analyzing the expressive 

power of networks
● Better understanding of importance of early layers: how and why
● Trajectory regularization is an effective technique, grounded in notion of 

expressivity
● Further work needed investigating trajectory regularization
● Trajectory has possible implications for understanding adversarial examples 


