FiIrmament —overview
and discussion

tukasz Dudziak
Based on: “"Firmament: fast, centralized cluster scheduling at
scale” by lonel Gog et al.

* Intelligent scheduling may significantly speedup execution time
* Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same
machine?)

Why * Fair scheduling

scheduling is

important?
Task-by-task placement Batching placement:
* Fast, good for decentralized . Always considers entire
schedulers workload
* Does not have “global” * New task == rescheduling
knowledge * Has ability to pre-empt
* Tasks might spend significant running tasks

time in a queue (unfair?) e Slow

Why

scheduling is
iImportant?

* Heterogenous systems

* Intelligent scheduling may significantly speedup execution time

 Multiple levels of cache (what tasks are better to be run on the same

machine?)

* Fair scheduling

Task-by-task placement

Fast, good for decentralized
schedulers

Does not have “global”
knowledge

Tasks might spend significant
time in a queue (unfair?)

Batching placement:

Always considers entire
workload

New task == rescheduling
Has ability to pre-empt
running tasks
Slow

Let’s optimize it!

- Send certain amount of flow through a network, such as its overall
cost is minimized.

Formally:
Minimize Z COSt(i,j)flOW(i,j)
: (i,J))EE

Min-cost |

subject to:
max-flow

vvev< > flowgn = Y flowgy =supplyv>

(v,i)EE (jv)EE

v(i,j)EE(O < flOW(i’j) < capacity(i,j))

* Solve task scheduling with MCMF problem

« Construct a flow network:

* Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

* Create all relevant connections between tasks and machines, in such
a way that an edge between a task T; and a machine M; has a cost
relative to the cost of running the task on the machine.

) My
4
3 ¥ M]
M
2 6 2
1 M

5 U
Top -
To, 2

n
Toz
Tio

>
Ty
7 U,

[—

Source: "Firmament: Fast, Centralized Cluster Scheduling at

Scale” lonel Gog et al.

* Solve task scheduling with MCMF problem

- Construct a flow network:
* Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

* Create all relevant connections between tasks and machines, in such
a way that an edge between a task T; and a machine M; has a cost
relative to the cost of running the task on the machine.

5 U[} — \
Top - My

2
4 .
Ty, 2 3 Potentially very large
s M number of edges!
Toz
M.
2 6 2
Tio
I
> M
Ty, :

7 Up

Source: "Firmament: Fast, Centralized Cluster Scheduling at
Scale” lonel Gog et al.

- Solution: aggregators

Cluster level, “you may assign me to any machine, the worst-case
cost is X"

Rack level, “you may assign me to any machine within
this rack, the worst-case cost isY”

[Unscheduled level, a cost of leaving a task unscheduled/pre-empting it

Individual machines, each

!

'

_\\ task is connected only to its
Y

best-case machine

{om

Source: "Quincy: Fair Scheduling for Distributed Computing
Clusters” Michael Isard et al.

* Quincy produces good scheduling, but is slow and does not scale...

100 £ T T T T T | T T3
3wl ™
o * |
gl =
N Le
' *%
Sl = -
I
ﬂ_l._=i=++l

PP ‘bﬁﬁﬂ@m‘:@s@q‘}@dﬁqﬁ@

Cluster size [machines)

Source: "Firmament: Fast, Centralized Cluster Scheduling at Scale” lonel Gog et al.

What can we do about it?

Algorithm Worst-case complexity N — number of nodes
Relaxation O(M°CU?)
. M —number of edges
_ Cycle canceling O(NM*CU) C—the t ed 9 .
Used by Quincy===) Cost scaling O(N*M1og(NC)) —the largest edge cost
Successive shortest path | O(N2U log(N)) U —the largest edge capacity

M>N>C>U

Source: "Firmament: Fast, Centralized Cluster Scheduling at
Scale” lonel Gog et al.

MCMF

100s

algorithms
overview

10s
1s
100ms
10ms
fms i i i i i E
S R

Cluster size [machines]

Avg. algorithm runtime [log,;]

Source: "Firmament: Fast, Centralized Cluster Scheduling at Scale”
lonel Gog et al.

Algorithm Worst-case complexity N — number of nodes
Relaxation O(M°CU?)
. M —number of edges
_ Cycle canceling O(NM*CU) C—the t ed 9 .
Used by Quincy===) Cost scaling O(N*M1og(NC)) —the largest edge cost
Successive shortest path | O(N2U log(N)) U —the largest edge capacity

M>N>C>U

Source: "Firmament: Fast, Centralized Cluster Scheduling at
Scale” lonel Gog et al.

MCMF

100s

algorithms
overview

10s

1s . .
But relaxation is

100ms better on average!

10ms

Ims :
N W RO

Cluster size [machines]

Avg. algorithm runtime [log,;]

Source: "Firmament: Fast, Centralized Cluster Scheduling at Scale”
lonel Gog et al.

FiIrmament

* Use relaxation as a primary algorithm
- Use incremental version of cost scaling (40% speedup) as fallback

* Return result from whichever algorithm happens to finish first

(both are run simultaneously —they are single-threaded)

- Allow for efficient switching between algorithms

- Provide efficient way of updating a flow network and extracting

task placement

1.0 ']’ T T T T 200 | T I |
g. _ =+ Relaxation only
= 08§ s 8 160 |- © Cost scaling (Quincy
E 0.6 . E 120
g
S04 :
,g N _E Eﬂ
E 0.2 — Firmament . §] 40
e = Cost scaling (Quincy) < 1 FRALE

0.0 I 1 I I I | 0 et 3

0 10 20 30 40 50 60 1000 1500 2000 2500 3000 3500 4000
Task placement latency [sec] Simulation Time [sec)

Source: "Firmament: Fast, Centralized Cluster Scheduling at Scale” lonel Gog et al.

Discussion

- 20 times faster placement than Quincy when scheduling tasks

over 12,500 machines

- Very detailed analysis of existing MCMF algorithms

- Generic system which allows user to specify custom policies

* e.g. network-aware policy

* But... it was shown that a policy can have direct impact on MCMF

solver’s performance (e.g. load-spreading policy is bad for
relaxation)

* The question if the optimizations presented by the authors work
well with other policies is left unanswered.

The end

Thank you for attention.

