
Firmament – overview 
and discussion
Łukasz Dudziak
Based on: “Firmament: fast, centralized cluster scheduling at 
scale” by Ionel Gog et al.



Why 
scheduling is 
important?

 Intelligent scheduling may significantly speedup execution time
 Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same 
machine?)

 Fair scheduling

Task-by-task placement
• Fast, good for decentralized 

schedulers
• Does not have “global” 

knowledge
• Tasks might spend significant 

time in a queue (unfair?)

Batching placement:
• Always considers entire 

workload
• New task == rescheduling
• Has ability to pre-empt 

running tasks
• Slow



Why 
scheduling is 
important?

 Intelligent scheduling may significantly speedup execution time
 Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same 
machine?)

 Fair scheduling

Task-by-task placement
• Fast, good for decentralized 

schedulers
• Does not have “global” 

knowledge
• Tasks might spend significant 

time in a queue (unfair?)

Batching placement:
• Always considers entire 

workload
• New task == rescheduling
• Has ability to pre-empt 

running tasks
• Slow

Let’s optimize it!



Min-cost
max-flow

 Send certain amount of flow through a network, such as its overall 
cost is minimized.
Formally:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑖,𝑗 ∈𝐸

𝑐𝑜𝑠𝑡(𝑖,𝑗)𝑓𝑙𝑜𝑤(𝑖,𝑗)

subject to:

∀𝑣∈𝑉 

𝑣,𝑖 ∈𝐸

𝑓𝑙𝑜𝑤 𝑣,𝑖 − 

𝑗,𝑣 ∈𝐸

𝑓𝑙𝑜𝑤 𝑗,𝑣 = 𝑠𝑢𝑝𝑝𝑙𝑦𝑣

∀ 𝑖,𝑗 ∈𝐸 0 ≤ 𝑓𝑙𝑜𝑤 𝑖,𝑗 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖,𝑗



Quincy

 Solve task scheduling with MCMF problem

 Construct a flow network:
 Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

 Create all relevant connections between tasks and machines, in such 
a way that an edge between a task 𝑇𝑖 and a machine 𝑀𝑖 has a cost 
relative to the cost of running the task on the machine.

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.



Quincy

 Solve task scheduling with MCMF problem

 Construct a flow network:
 Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

 Create all relevant connections between tasks and machines, in such 
a way that an edge between a task 𝑇𝑖 and a machine 𝑀𝑖 has a cost 
relative to the cost of running the task on the machine.

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Potentially very large
number of edges!



Quincy

 Solution: aggregators

Source: “Quincy: Fair Scheduling for Distributed Computing
Clusters” Michael Isard et al.

Unscheduled level, a cost of leaving a task unscheduled/pre-empting it

Cluster level, “you may assign me to any machine, the worst-case
cost is X”

Rack level, “you may assign me to any machine within
this rack, the worst-case cost is Y”

Individual machines, each 
task is connected only to its 
best-case machine



Quincy

 Quincy produces good scheduling, but is slow and does not scale…

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” Ionel Gog et al.

What can we do about it?



MCMF
algorithms
overview

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” 
Ionel Gog et al.

N – number of nodes
M – number of edges
C – the largest edge cost
U – the largest edge capacity
M > N > C > U

Used by Quincy



MCMF
algorithms
overview

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” 
Ionel Gog et al.

N – number of nodes
M – number of edges
C – the largest edge cost
U – the largest edge capacity
M > N > C > U

Used by Quincy

But relaxation is 
better on average! 



Firmament

 Use relaxation as a primary algorithm

 Use incremental version of cost scaling (40% speedup) as fallback

 Return result from whichever algorithm happens to finish first
(both are run simultaneously – they are single-threaded)

 Allow for efficient switching between algorithms

 Provide efficient way of updating a flow network and extracting 
task placement



Results

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” Ionel Gog et al.



Discussion

 20 times faster placement than Quincy when scheduling tasks 
over 12,500 machines

 Very detailed analysis of existing MCMF algorithms

 Generic system which allows user to specify custom policies
 e.g. network-aware policy

 But… it was shown that a policy can have direct impact on MCMF 
solver’s performance (e.g. load-spreading policy is bad for 
relaxation)

 The question if the optimizations presented by the authors work
well with other policies is left unanswered.



The end
Thank you for attention.


