
Firmament – overview 
and discussion
Łukasz Dudziak
Based on: “Firmament: fast, centralized cluster scheduling at 
scale” by Ionel Gog et al.



Why 
scheduling is 
important?

 Intelligent scheduling may significantly speedup execution time
 Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same 
machine?)

 Fair scheduling

Task-by-task placement
• Fast, good for decentralized 

schedulers
• Does not have “global” 

knowledge
• Tasks might spend significant 

time in a queue (unfair?)

Batching placement:
• Always considers entire 

workload
• New task == rescheduling
• Has ability to pre-empt 

running tasks
• Slow



Why 
scheduling is 
important?

 Intelligent scheduling may significantly speedup execution time
 Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same 
machine?)

 Fair scheduling

Task-by-task placement
• Fast, good for decentralized 

schedulers
• Does not have “global” 

knowledge
• Tasks might spend significant 

time in a queue (unfair?)

Batching placement:
• Always considers entire 

workload
• New task == rescheduling
• Has ability to pre-empt 

running tasks
• Slow

Let’s optimize it!



Min-cost
max-flow

 Send certain amount of flow through a network, such as its overall 
cost is minimized.
Formally:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍

𝑖,𝑗 ∈𝐸

𝑐𝑜𝑠𝑡(𝑖,𝑗)𝑓𝑙𝑜𝑤(𝑖,𝑗)

subject to:

∀𝑣∈𝑉 ෍

𝑣,𝑖 ∈𝐸

𝑓𝑙𝑜𝑤 𝑣,𝑖 − ෍

𝑗,𝑣 ∈𝐸

𝑓𝑙𝑜𝑤 𝑗,𝑣 = 𝑠𝑢𝑝𝑝𝑙𝑦𝑣

∀ 𝑖,𝑗 ∈𝐸 0 ≤ 𝑓𝑙𝑜𝑤 𝑖,𝑗 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖,𝑗



Quincy

 Solve task scheduling with MCMF problem

 Construct a flow network:
 Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

 Create all relevant connections between tasks and machines, in such 
a way that an edge between a task 𝑇𝑖 and a machine 𝑀𝑖 has a cost 
relative to the cost of running the task on the machine.

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.



Quincy

 Solve task scheduling with MCMF problem

 Construct a flow network:
 Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

 Create all relevant connections between tasks and machines, in such 
a way that an edge between a task 𝑇𝑖 and a machine 𝑀𝑖 has a cost 
relative to the cost of running the task on the machine.

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Potentially very large
number of edges!



Quincy

 Solution: aggregators

Source: “Quincy: Fair Scheduling for Distributed Computing
Clusters” Michael Isard et al.

Unscheduled level, a cost of leaving a task unscheduled/pre-empting it

Cluster level, “you may assign me to any machine, the worst-case
cost is X”

Rack level, “you may assign me to any machine within
this rack, the worst-case cost is Y”

Individual machines, each 
task is connected only to its 
best-case machine



Quincy

 Quincy produces good scheduling, but is slow and does not scale…

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” Ionel Gog et al.

What can we do about it?



MCMF
algorithms
overview

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” 
Ionel Gog et al.

N – number of nodes
M – number of edges
C – the largest edge cost
U – the largest edge capacity
M > N > C > U

Used by Quincy



MCMF
algorithms
overview

Source: “Firmament: Fast, Centralized Cluster Scheduling at 
Scale” Ionel Gog et al.

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” 
Ionel Gog et al.

N – number of nodes
M – number of edges
C – the largest edge cost
U – the largest edge capacity
M > N > C > U

Used by Quincy

But relaxation is 
better on average! 



Firmament

 Use relaxation as a primary algorithm

 Use incremental version of cost scaling (40% speedup) as fallback

 Return result from whichever algorithm happens to finish first
(both are run simultaneously – they are single-threaded)

 Allow for efficient switching between algorithms

 Provide efficient way of updating a flow network and extracting 
task placement



Results

Source: “Firmament: Fast, Centralized Cluster Scheduling at Scale” Ionel Gog et al.



Discussion

 20 times faster placement than Quincy when scheduling tasks 
over 12,500 machines

 Very detailed analysis of existing MCMF algorithms

 Generic system which allows user to specify custom policies
 e.g. network-aware policy

 But… it was shown that a policy can have direct impact on MCMF 
solver’s performance (e.g. load-spreading policy is bad for 
relaxation)

 The question if the optimizations presented by the authors work
well with other policies is left unanswered.



The end
Thank you for attention.


