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* Intelligent scheduling may significantly speedup execution time
* Heterogenous systems

 Multiple levels of cache (what tasks are better to be run on the same
machine?)

Why * Fair scheduling
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* Fast, good for decentralized . Always considers entire
schedulers workload
* Does not have “global” * New task == rescheduling
knowledge * Has ability to pre-empt
* Tasks might spend significant running tasks

time in a queue (unfair?) e Slow
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Let’s optimize it!



- Send certain amount of flow through a network, such as its overall
cost is minimized.

Formally:
Minimize Z COSt(i,j)flOW(i,j)
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* Solve task scheduling with MCMF problem

« Construct a flow network:

* Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

* Create all relevant connections between tasks and machines, in such
a way that an edge between a task T; and a machine M; has a cost
relative to the cost of running the task on the machine.
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* Solve task scheduling with MCMF problem

- Construct a flow network:
* Each task is a source node with supply 1

 Each machine is connected to the sink with a zero-cost edge with
capacity 1 (so only one task can be assigned to a machine)

* Create all relevant connections between tasks and machines, in such
a way that an edge between a task T; and a machine M; has a cost
relative to the cost of running the task on the machine.
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- Solution: aggregators

Cluster level, “you may assign me to any machine, the worst-case
cost is X"

Rack level, “you may assign me to any machine within
this rack, the worst-case cost isY”

[ Unscheduled level, a cost of leaving a task unscheduled/pre-empting it

Individual machines, each

!
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_\\ task is connected only to its
Y

best-case machine
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Source: "Quincy: Fair Scheduling for Distributed Computing
Clusters” Michael Isard et al.



* Quincy produces good scheduling, but is slow and does not scale...
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What can we do about it?



Algorithm Worst-case complexity N — number of nodes
Relaxation O(M°CU?)
. M —number of edges
_ Cycle canceling O(NM*CU) C—the t ed 9 .
Used by Quincy===) Cost scaling O(N*M1og(NC)) —the largest edge cost
Successive shortest path | O(N2U log(N)) U —the largest edge capacity

M>N>C>U

Source: "Firmament: Fast, Centralized Cluster Scheduling at
Scale” lonel Gog et al.
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FiIrmament

* Use relaxation as a primary algorithm
- Use incremental version of cost scaling (40% speedup) as fallback

* Return result from whichever algorithm happens to finish first

(both are run simultaneously —they are single-threaded)

- Allow for efficient switching between algorithms

- Provide efficient way of updating a flow network and extracting

task placement
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Discussion

- 20 times faster placement than Quincy when scheduling tasks

over 12,500 machines

- Very detailed analysis of existing MCMF algorithms

- Generic system which allows user to specify custom policies

* e.g. network-aware policy

* But... it was shown that a policy can have direct impact on MCMF

solver’s performance (e.g. load-spreading policy is bad for
relaxation)

* The question if the optimizations presented by the authors work
well with other policies is left unanswered.



The end

Thank you for attention.




