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Problems with
database
management
systems (DBMS)
configuration
tuning

Standard approach: employ a
database administrator (DBA)
to tweak knobs through
“trial-and-error”

Main problems:

O

O

O

Dependencies
Continuous Setting

Non-reusable
configurations

Tuning complexity



OtterTune

e Reduces the required input from the DBA.
e Works for any DBMS.
e Uses machine learning models through different stages of the system.

e Continuously uses new data and reuses previous training data to incrementally improve
the models used for predicting good configurations.



System architecture
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System architecture

At the beginning of the tuning session:

e DBA specifies which metric
OtterTune needs to improve.

e Controller connects to target DBMS
and starts observation period.

DBMS API



Observation period

Aim: Collect current knob configuration and runtime statistics for both
DBMS-independent external metric and DBMS-specific internal metric.

Main steps performed by the controller:

Reset statistics for target DBMS.

Execute some workload trace or a set of queries specified by the DBA.
Observe DBMS and measures metrics specified by DBA.

At the end, collect additional DBMS-specific internal metrics.

Store metrics with the same name as a single sum scalar value.
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System architecture

After the observation period:

e Controller sends results to the
tuning manager.

e Tuning manager stores all of the

information in the data repository.

e OtterTune identifies the next
configuration that should be
installed on the DBMS.




Machine Learning Pipeline

Workload Characterization Knob Identification - Automatic Tuner




Workload identification

Aim: identify characteristic aspects of target workload.

e Make use of the runtime statistics recorded while executing workload.
e OtterTune is DBMS independent since metrics collected do not need to be labelled.



Prune redundant metrics

Factor Analysis k-means clustering

e Pre-processingstep. e Find groups of metrics similar
e Dimensionality reduction. to each other

e Reduce the noise in the data.
e Select one metric from each

group.



Factor analysis

Knob Configurations
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Factor analysis

Knob Configurations Factors
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k-means clustering
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Select one metric from each cluster
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Identify important knobs

e Find knobs that affect system’s performance.

e |dentify dependencies between knobs by adding polynomial features.

e Dynamically increase the number of knobs used in the tuning session.



Lasso regression

Aim: find relationship between knob (or functions
of knobs) and metrics.

Variant of linear regression.
Adds an L1 penalty to the loss function.

e Removeirrelevant knobs by shrinking their
weights to zero.

e Orde knobs by order of appearance in
regression.

Knobs
(or functions of knobs)




Automatic tuning

Workload mapping Configuration Recommendation

e Find vyorklotad.in the data e Use Gaussian Process (GP)
repository similar to the regression to find knob
target workload. configuration that would

target metric.



Workload mapping

X = value of metric m when executing
mij . . . .
workload i for configuration |

workload

e For each metric m:
o Compute Euclidean distance between target workload and each other
workloads i.
e Compute score for workload i by averaging distance over all possible metrics.
e Select workload with lowest score.



Gaussian Process (GP) regression

e Usedatafrom mapped workload to
train a GP model.

e Update model by adding observed
metrics from target workload.
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http://mlg.eng.cam.ac.uk/teaching/4f13/1718/



Exploration

e Search unknown areas of the
GP.

e Useful for getting more data.

e Helps identify configurations
with knob values beyond limits
tried in the past.

Exploitation

Select configuration similar to
best configuration found in the
GP.

Makes slight modifications to
previously known good
configurations.



Configuration recommendation

e Exploration/Exploitation strategy depends on variance of data points.

e Always select configuration with greatest expected improvement.

e Use gradient descent to find the configuration that maximizes potential improvement.

o Initialization set: top-performing configurations + configurations for which knob values
are selected randomly.

o Finds local optimum on surface predicted by GP.



System architecture
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Evaluation



DBMS evaluated
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Workloads

Wikipedia

Yahoo! Cloud Serving Benchmark (OLTP)
Simple workload with high scalability requirement. (18m tuples)

OLTP benchmark
Simulates an order processing application. (200 workhouses)

OLTP benchmark
Transactions -> most common operations in Wikipedia for
article and “watchlist” management. (100k articles)

Simulates OLAP environment
Little prior knowledge of queries.




Elements evaluated

e Influence of the number of knobs used in the performance.
o The incremental approach works best for all DBMSs.
o OtterTune identifies the optimal number of knobs that should be tuned.
e Comparison with iTuned [2].
o Demonstrates that continuously integrating new training data helps with performance.

o OtterTune works much better on OLTP workloads, but it has similar performance with
ITuned on OLAP workloads.

Note: Before starting the evaluation, training data was obtained to bootstrap OtterTune’s
repository.



Execution time breakdown
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Efficacy Evaluation
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Figure 10: Efficacy Comparison (MySQL) — Throughput and latency
measurements for the TPC-C benchmark using the (1) default configu-
ration, (2) OtterTune configuration, (3) tuning script configuration, (4)
Lithuanian DBA configuration, and (5) Amazon RDS configuration.
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Figure 11: Efficacy Comparison (Postgres) — Throughput and latency
measurements for the TPC-C benchmark using the (1) default configura-
tion, (2) OtterTune configuration, (3) tuning script configuration, (4) expert
DBA configuration, and (5) Amazon RDS configuration.



Assumptions and limitations of
OtterTune



Assumptions

e Assume that the OtterTune controller has administrative privileges on the DBMS.
o If not, DBA needs to deploy a second copy for trials.

e Assume that the DBA is aware of dangerous knobs which they can add to a blacklist of
knobs that OtterTune does not change.

e Assume that physical design of database is reasonable. (e.g. proper indices already
installed)



Limitations

e OtterTune only considers global knobs.

e |t also ignores the cost of restarting the DBMS when suggesting configurations.



Problems deferred as future work....

e Automatically identify knobs that require DBMS restarting.
e Taking into consideration the cost of restarting when recommending configurations.
e Automatically determining if certain knobs can cause application to lose data.

e Consider tuning table or component-specific knobs.



Summary



Contributions of the paper

OtterTune:

e Can find good configurations for a much larger number of knobs than previous automatic
database tuning system.

e Can also identify dependencies between knobs.
e Generates configurations much faster than previous systems.

e Leverages machine learning techniques and data from past configurations.



Criticism (my opinion)

e Details are not very well explained.
e OtterTune still needs significant input from the DBA.
e Approach is overly complicated and has a lot of limitations.

e Not being able to determine which knobs can cause data loss is dangerous.
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Thank you!
Questions?



