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Contributions

• Presents an architectural model for a “self-driving” database 

management system (DBMS).

• Should allow DBMS to adapt without any human intervention. 

• Optimizes system for the predicted future workloads.

• Measures effects of actions to better schedule deployment.

• Presents Peloton.

• A skeleton implementation of the theoretical architecture.



Previous Self-Tuners

• Must prepare workload samples.

• Requires spare hardware to test on.

• Requires intuition into the DBMS’s internals.

• External to the DBMS.

• Limited actions that can be taken.

• Reactionary as they cannot predict future workloads.

• Cannot take a holistic view that considers more than one problem at a time.

• Often require restarting on change.

• Many actions too slow.



Application Workloads

• Online Transaction Processing (OLTP)

• Row-oriented.

• Optimizes writes.

• Online Analytical Processing (OLAP)

• Column-oriented.

• Optimizes reads.

• Hybrid Transaction-Analytical Processing (HTAP)

• Execute OLAP queries as soon as data is written.



Application Workloads

• Could deploy separate databases.

• Stream updates.

• Could optimize for different database segments.

• Self-driving DBMS needs to:

• Forecast resource utilization trends.

• Choose action to optimize database.

• Deploy optimization at time of least impact.

• Cannot:

• Require applications to be rewritten.

• Rely on program analysis tools that only support certain programming environments.



Actions





Workload Classification:

• Clusterer uses unsupervised learning. (DBSCAN algorithm)

• Can use runtime metrics or logical semantics.
• Runtime more sensitive to changes in contents, design or concurrent workloads.

• Logical semantics isn’t as accurate.

• Uses standard cross validation to detect when clusters are no longer correct and 
require rebuilding.



Workload Forecasting:

• Train forecast model that predicts each cluster’s arrival rate.

• Identifies periodicity and data growth trends.

• Recurrent Neural Networks (RNNs) are effective at predicting time-series patterns for non-linear systems.

• Specifically uses Long Short-Term Memory (LSTM).

• Contains special blocks that determine whether to retain old information and when to output it into the network.

• Maintains multiple RNNs that forecast workloads at different time horizons and interval granularities.

• Tracking all queries increases storage and training costs.



Action Generation:

• Searches for actions that might improve performance.

• Guided by forecasting model.

• Stores along with resource requirements and history of effects.



Action Planning:

• Uses control theory, Receding-Horizon Control 
Model (RHCM).

• At each time epoch:

• Estimates workload for time horizon using forecasts.

• Searches for a sequence of actions that minimize 
objective function (latency).

• Performs first action. 

• Avoids recently invoked then reversed actions.

• Uses a cost-benefit model:

• Cost is estimate of deployment latency and cost on 

performance.

• Benefit is change in queries’ latencies.

• Deploys actions in a non-blocking manner.



Peloton Implementation

• Assumes queries are already clustered correctly.

• Clusterer not tested.

• Integrated Google TensorFlow to perform workload forecasting.

• Uses two stacked LSTM layers on input, connected to a linear regression layer.

• Uses a 10% dropout rate to avoid over-fitting.

• Uses 1 hour time horizon with 1 minute granularity.

• Input is per-minute workload over past 2 hours.

• Uses 24 hour time horizon with 1 hour granularity.

• Input is previous day’s workload.



Peloton Implementation

• Uses 75% of a 4 week data 

set to train the model.

• Training took 11 and 18 

minutes on a Nvidia

GeForce GTX 980 GPU.

• Validates using other 25%.

• Predicts with 11.3% for 1-

hour and 13.2% for 24-

hour.



Peloton Implementation

• Migrates table to row or 

column layout based on 

types of queries.

• Hot tuples are stored in a 

row-oriented layout.

• Cold tuples are stored in a 

column-oriented layout.



Criticisms

• Shows only a small gain over simply using the column layout.

• Peleton is only tested on a very predictable workload with simple 

behaviour patterns.

• Peleton is not tested under any drastic changes such as failures or 

erratic traffic.

• It claims to be able to do almost everything, yet is only shown to do 

one very simple change.

• Could have been scheduled by an administrator.



Criticisms

• The cost of the extra work and resources for such are not properly 

addressed.

• The action generator is not tested at all as only one action is made 

available to Peleton.

• Assumes latency is most important metric.

• No kind of possible distribution of the database is mentioned.



Questions?


