
Integrating Algorithmic Parameters into
Benchmarking and Design Space Exploration
in 3D Scene Understanding

B. Boding, L. Nardi, M.Z. Zia et al. [1]

LSDPO (2017/2018) Paper Presentation
Tudor Tiplea (tpt26)

Problem

● Many modern systems must operate under increasingly more severe constraints

○ E.g. tight power consumption and thermal footprint constraints for mobile systems

● How can we help system designers make informed trade-off decisions?

○ E.g. balance performance/accuracy of a system under a power consumption < 1W constraint

● And how can we automatically optimise the system as much as possible?

Specific problem

● Demonstrate on a concrete application, a 3D scene understanding algorithm

○ High computational demands

● We can configure the system at the algorithmic, compiler and architectural level

○ Usual approaches only focus on the last two

● Measure performance in terms of power consumption, runtime (FPS) and accuracy of

computation

Goal

● We want to identify the Pareto optimal

front in the optimisation space

● These are the solutions that cannot be

improved in any optimisation objective

without degrading at least another

objective

Performance model

● 1,800,000 possible configurations

● Cannot explore exhaustively

● Therefore, a model predicting the

performance of a configuration must be

built

Active learning

● Can bootstrap a predictive model using active learning:

○ Start with a random sample of configurations

○ Run the system with the sampled configurations

○ Measure the runtime, accuracy and power consumption

○ Train predictor using all the datapoints we’ve evaluated so far

○ Estimate Pareto optimal front using current predictor

○ Sample a new set of configurations localised in this new estimated area

○ Iterate

● In other words, use predictor to pick training examples that improve its accuracy the most

Randomised Decision Forest

● In this case, a better predictor than neural networks, SVMs and nearest neighbour

● A decision tree is a recursive binary partitioning of the input space:

○ A simple decision (1D threshold) at each internal node

○ Output of a leaf is average of training samples that reached that leaf

● A randomised decision forest is a collection of decision trees:

○ Output is average of outputs from each decision tree

○ Introduce randomness to remove variance in training:

■ Train each tree on random subset of training data

■ For each node, pick decision input variable randomly (e.g. volume resolution parameter)

Example: Binary Decision Tree

Step back - Co-design space exploration

● Follow an incremental, top-down approach:

○ Start with random sample of configurations

○ Estimate Pareto optimal front in the algorithmic level

○ Refine that at the compiler level

○ Refine even further at the architectural level

Results

● Greatest improvements gained at algorithmic level (6.35x improvement in execution time,

23.5% reduction in power consumption)

● Further improvements at lower levels, but of smaller magnitude

● Reached goal of running the 3D mapping in real time, on an embedded device with a 1W

power budget

● 4.8x execution time and 2.8x power consumption reductions over hand-tuned,

state-of-the-art implementations of the 3D mapping algorithm

Opinion

● Shown that exploring algorithmic level is worth it for optimising a system

● But the approach doesn’t give the same impressive results at the lower levels

● This methodology was developed with this application in mind, no guarantee it would work

well out of the box for other applications

Questions

Thank you!

References

[1] B. Bodin, L. Nardi, M. Z. Zia et al. ‘Integrating Algorithmic Parameters into Benchmarking and Design Space
Exploration in 3D Scene Understanding’

All figures, plots and tables in this presentation are extracted from the paper above.

