Green-Marl

A DSL for Easy and Efficient Graph Analysis

S. Hong, H. Chafi, E. Sedlar, K. Olukotun [1]

LSDPO (2017/2018) Paper Presentation
Tudor Tiplea (tpt26)

Problem

e Paperidentifies three major challenges in large-scale graph analysis:
1) Capacity — graph won't fit in memory
2) Performance — many graph algorithms fail to perform on large graphs
3) Implementation — hard to write correct and efficient graph algorithms
e Tackle last two by only focusing on graphs that fit in memory
e Inthis case, a major impediment to performance is memory latency (working-set size

exceeds cache size)

Towards a solution

e Canimprove performance by exploiting data parallelism abundant in graphs
e However, performance and implementation are not orthogonal

e Parallelism makes implementation more difficult

e Need to think about race conditions, deadlock, etc.

e There needs to be abalance

Contribution

e Green-Marl — A Domain-Specific Language
o Exposesinherent parallelism
o Has constructs designed specifically for easing graph algorithm implementation
o Expressive but concise

e A Green-Marl compiler
o Automatically optimises and parallelises the program
o Produces C++ code (for now)
o Extendable to target other architectures

e Anevaluation of a number of graph algorithms implemented in Green-Marl claiming an
increase in performance and productivity

The language

Overview

e Operates over graphs (directed or undirected) and associated properties (one kind of data
stored in each node/edge)
e Assumes graphs are immutable and no aliases between graph instances or properties

e Givenagraphand a set of properties it can compute

o Ascalar value (e.g. conductance of graph)
o Anew property

o Asubgraph selection

e Has typed data: primitives, nodes/edges bound to a graph, collections

Procedure foo (Gl, GZ2:Graph, n:Node (Gl)) {
Node (G2) n2; // a node of graph G2
n2 = n; // type—-error (bound to different graphs)
Node_Prop<Int> (Gl) A; //integer node property for GI
n.A = 0;
Node_Set (Gl) S; // a node set of GI
S Bl d11) 2

Int sum=0;

Foreach (s: G.Nodes) {
Int p_sum = u.A;
Parauelism Foreach (t: s.Nbrs)

p_sum *x= t.B;

sum += p_sum;

e Group assignments (implicit) }
o e.g. graph_instance.property =0 Int v = sum / 2;

e Parallel regions (explicit)

o Uses fork-join parallelism
o The compiler can detect some possible conflicts in here

e Reductions

o Have syntactic sugar constructs Int x,vy;
o Canspecify at which iteration scope reduction happens x = Sum(t:G.Nodes) {t.A};
y = 0;

Foreach (t : G.Nodes)
yt+t= t.A;

Traversals

e Cantraverse graphsineither BFSor DFSorder &
e Each allows both a forwards and a backwards pass
e Canprune the search tree using a boolean navigator

e For DFS the execution is sequential

e BFShaslevel-synchronous execution

o Nodes at same level can be processed in parallel
o But parallel contexts are synchronised before next level

e DuringaBFS traversal each node exposes a collection of its upwards and downwards
neighbours

InBFS (iter:src” .Nodes From root) [navigator] (filterl)
forward_body_statement

InRBFS (filter2)
backward_body_statement

The compiler

Analysis Transform

Back-end

Target Transform

U_ser_ Parsing &
Application Green-Marl Checking
“““““““ L Code
| - Front-end
: Graph E
|

e Code
: Code Gen

o [Graph Data] Green-Marl
Structure (LIB) Compiler

Structure

e Parsing & checking:

o Candetect some data conflicts (Read-Write, Read-Reduce, Write-Reduce, Reduce-Reduce)

e Architecture independent optimisations:
o Loop fusion, code hoisting, flipping edges (uses domain knowledge)

e Architecture dependent optimisations:
o NOTE: currently the compiler only parallelises the inner-most graph-wide iteration

e Code generation:
o Assumes gcc as compiler, uses OpenMP as threading library

o Uses efficient code-generation templates for DFS and BFS

Evaluation

Methodology

e Use synthetically generated graphs (generally 32 million nodes, 256 million edges):
o uniform degree distribution
o power-law degree distribution

e Testonanumber of graph algorithms:
o Betweenness centrality
o Conductance
o Vertex Cover
o PageRank
o Kosaraju (strongly connected components)

e Compare with implementations using the SNAP library

Productivity gains

LOC LOC
Name Original Green-Marl Source
BC 350 24 9] (C OpenMp)
Conductance 42 10 9] (C OpenMp)
Vetex Cover 71 25 9] (C OpenMp)
PageRank 58 15 2] (C++, sequential)
SCC(Kosaraju) 80 15 3] (Java, sequential)

Performance gains (BC)

18 peed up . i . . 18

17 + 1 17 +

16 1 16 |

15 + 1 15 |

14 PRI, 14

i — B

11 | | /gi* JER T L 11 |

10 ¢ ide’ LaIII s 10 |

9 - / L bt g}

8 B ?{) " f_-____——-" 8 -

Tr f;f -t Tt

g L sF . g L. g/ .
V/ SNAP —+—] I]

g g‘/ GreerMarl —=—] g ’c{v GreerMarl —=—]

2 / NoFlipBe —&— 1 2 r / NoFlipBe —&— A

(1) NoSaveCh, NoFlipBe —*— 1 (1) NoSaveCh, NoFlipBe —#%— 1

0 2 4 6 8 10 12 14 16 0O 2 4 6 8 10 12 14 16
Mum threads Mum threads

(a) RMAT (b) Uniform

Performance gains (Conductance)

8 speed up . . g8 Speed up
7.5 SNAP —+— | 7.5} SNAP —+— i
7 GreenMarl —— - 7 GreenMarl —— .
6.5 f NolM —a— . 6.5 NolLM —e— -
- g ~NolLM, NoSRDC —#%— g - g ~NoLM, NoSRDC —%— o
5t 5 t ~ —3
4.5 | 4.5 | s]
4 4 t i -
3.5 3.5 ;{ -
3 r 3r 3 -
2.5t 2.5 fi g 1
2t 2r 4 -
1.5 1.5 ¢ -
| 174 -
0.5 e * —t 0.5 [oe—xk * 3
0 0

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Num threads Mum threads

(a) RMAT (b) Uniform

Opinion

What's neat

e Languageiseasy touse

e Using acompiler means:
o Usersdon’t have to worry about applying optimisations themselves
o Programs can target multiple architectures

e Producing high-level code (like C++) means the graph analysis code can be integrated in
existing applications with minimal changes

e Further work could even support out-of-memory graphs
o E.g.compile Green-Marl to Pregel

e Orusing GPUs

But...

e Theecosystem is very limited (for now, at least):
o Cannot modify the graph structure
o Canonly compile to C++
o Onlyinner-most graph-wide loops are parallelised

e Keep in mind none of the optimisations are novel

e Also, measuring productivity gains in lines of code seems very subjective and the claims
should be taken with a pinch of salt

References

[1]S. Hong, H. Chafi, E. Sedlar, K.Olukotun: Green-Marl: A DSL for Easy and Efficient Graph Analysis,
ASPLOS, 2012.

All code snippets and evaluation plots in this presentation are extracted from the paper above.

Questions

