
Green-Marl
A DSL for Easy and Efficient Graph Analysis

S. Hong, H. Chafi, E. Sedlar, K. Olukotun [1]

LSDPO (2017/2018) Paper Presentation
Tudor Tiplea (tpt26)

Problem

● Paper identifies three major challenges in large-scale graph analysis:

1) Capacity — graph won’t fit in memory

2) Performance — many graph algorithms fail to perform on large graphs

3) Implementation — hard to write correct and efficient graph algorithms

● Tackle last two by only focusing on graphs that fit in memory

● In this case, a major impediment to performance is memory latency (working-set size

exceeds cache size)

Towards a solution

● Can improve performance by exploiting data parallelism abundant in graphs

● However, performance and implementation are not orthogonal

● Parallelism makes implementation more difficult

● Need to think about race conditions, deadlock, etc.

● There needs to be a balance

Contribution

● Green-Marl — A Domain-Specific Language
○ Exposes inherent parallelism
○ Has constructs designed specifically for easing graph algorithm implementation
○ Expressive but concise

● A Green-Marl compiler
○ Automatically optimises and parallelises the program
○ Produces C++ code (for now)
○ Extendable to target other architectures

● An evaluation of a number of graph algorithms implemented in Green-Marl claiming an

increase in performance and productivity

The language

Overview

● Operates over graphs (directed or undirected) and associated properties (one kind of data

stored in each node/edge)

● Assumes graphs are immutable and no aliases between graph instances or properties

● Given a graph and a set of properties it can compute

○ A scalar value (e.g. conductance of graph)

○ A new property

○ A subgraph selection

● Has typed data: primitives, nodes/edges bound to a graph, collections

Parallelism

● Group assignments (implicit)

○ e.g. graph_instance.property = 0

● Parallel regions (explicit)
○ Uses fork-join parallelism
○ The compiler can detect some possible conflicts in here

● Reductions
○ Have syntactic sugar constructs

○ Can specify at which iteration scope reduction happens

Traversals

● Can traverse graphs in either BFS or DFS order

● Each allows both a forwards and a backwards pass

● Can prune the search tree using a boolean navigator

● For DFS the execution is sequential

● BFS has level-synchronous execution
○ Nodes at same level can be processed in parallel
○ But parallel contexts are synchronised before next level

● During a BFS traversal each node exposes a collection of its upwards and downwards
neighbours

The compiler

Structure

● Parsing & checking:
○ Can detect some data conflicts (Read-Write, Read-Reduce, Write-Reduce, Reduce-Reduce)

● Architecture independent optimisations:
○ Loop fusion, code hoisting, flipping edges (uses domain knowledge)

● Architecture dependent optimisations:
○ NOTE: currently the compiler only parallelises the inner-most graph-wide iteration

● Code generation:
○ Assumes gcc as compiler, uses OpenMP as threading library

○ Uses efficient code-generation templates for DFS and BFS

Evaluation

Methodology

● Use synthetically generated graphs (generally 32 million nodes, 256 million edges):
○ uniform degree distribution
○ power-law degree distribution

● Test on a number of graph algorithms:
○ Betweenness centrality
○ Conductance
○ Vertex Cover
○ PageRank
○ Kosaraju (strongly connected components)

● Compare with implementations using the SNAP library

Productivity gains

Performance gains (BC)

Performance gains (Conductance)

Opinion

What’s neat

● Language is easy to use

● Using a compiler means:
○ Users don’t have to worry about applying optimisations themselves
○ Programs can target multiple architectures

● Producing high-level code (like C++) means the graph analysis code can be integrated in

existing applications with minimal changes

● Further work could even support out-of-memory graphs
○ E.g. compile Green-Marl to Pregel

● Or using GPUs

But...

● The ecosystem is very limited (for now, at least):
○ Cannot modify the graph structure
○ Can only compile to C++
○ Only inner-most graph-wide loops are parallelised

● Keep in mind none of the optimisations are novel

● Also, measuring productivity gains in lines of code seems very subjective and the claims

should be taken with a pinch of salt

References

[1] S. Hong, H. Chafi, E. Sedlar, K.Olukotun: Green-Marl: A DSL for Easy and Efficient Graph Analysis,

ASPLOS, 2012.

All code snippets and evaluation plots in this presentation are extracted from the paper above.

Questions

Thank you!

