
Reviewing the Ligra single-node graph
processing framework

Thomas Parks
October 24, 2017

U. of Cam

Introduction

The paper

Ligra: A Lightweight Graph Processing Framework for Shared
Memory

Authors: Julian Shun and Guy E. Blelloch, CMU

A reaction to the availability of large single nodes.

1

The shift of computing

Interest in processing graph
data has been relatively
constant over time, whereas
cluster computing fluctuates in
the published literature.

1997.5 2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 2015.0
year

101

102

103

104

M
ax

im
um

 R
AM

 fo
r D

EL
L

se
rv

er
 (G

B)
 (L

og
 sc

al
e)

The RAM capacity for a single
server has grown exponentially,

with a knee approximately
where the use of clusters drops

off

2

Ligra single node graph computations

API inspired by Hybrid BFS1.

Aims for every high efficiency by using CAS2

Outperforms Pregel on a per core and a absolute basis3.

Also claims superior performance per dollar and Joule4.

1Beamer, Asanovic, et al., Searching for a parent instead of fighting over
children: A fast breadth-first search implementation for graph500.
2Schweizer, Besta, and Hoefler, “Evaluating the Cost of Atomic Operations
on Modern Architectures”.
3This was not throughly explored in the paper.
4This was not mentioned again after claiming improvements in the abstract.

3

API

Ligra API and motivating example

parents = [-1, ..., -1] ; // The parent of every node
UPDATE s, d

return CAS(parents[d], -1, s);
COND i

return parents[i] == -1;
BFS G, r

parents[r] := r;
frontier = r;
while size(frontier) != 0 do

// For every vertex in the frontier,
UPDATE all neighbouring j if COND. Add
to returned set if UPDATE(i, j).

frontier := EDGEMAP(G, frontier, UPDATE, COND);
end

4

EDGEMAP working outwards

Semantics allow for multiple implementations with different
performance.

EDGEMAP_SPARSE G, U, F, C
result = {};
/* both loops fully parallel */
foreach v in U do

foreach v2 in out_neighbours(v) do
if C(v2) and F(v, v2) // not in the BFS tree
then

add v2 to result;
end

end
end
return result; 5

EDGEMAP working outwards

Semantics allow for multiple implementations with different
performance. S. Beamer et al. / Direction-optimizing breadth-first search 139

Fig. 3. Breakdown of edges in the frontier for a sample search on
kron27 (Kronecker generated 128M vertices with 2B undirected
edges) on the 16-core system. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-130370.)

Figure 3 shows a breakdown of the result of each
edge check for each step during a conventional parallel
queue-based top-down BFS traversal on a Kronecker-
generated synthetic graph (used for the Graph500
benchmark [15]). The middle steps (2 and 3) consume
the vast majority of the runtime, which is unsurpris-
ing since the frontier is then at its largest size, requir-
ing many more edges to be examined. During these
steps, there are a great number of wasted attempts to
become the parent of a neighbor. Failures occur when
the neighbor has already been visited, and these can be
broken down into three different categories based on
their depth relative to the candidate parent: valid par-
ent, peer and failed child. A valid parent is any neigh-
bor at depth d − 1 of a vertex at depth d. A peer is
any neighbor at the same depth. A failed child is any
neighbor at depth d + 1 of a vertex at depth d, but at
the time of examination it has already been claimed by
another vertex at depth d. Successful checks result in a
claimed child. Figure 3 shows most of the edge checks
do fail and represent redundant work, since a vertex in
a correct BFS tree only needs one parent.

Implementations of this same basic algorithm can
vary in a number of performance-impacting ways, in-
cluding: data structures, traversal order, parallel work
allocation, partitioning, synchronization or update pro-
cedure. The process of checking if neighbors have been
visited can result in many costly random accesses. An
effective optimization for shared-memory machines
with large last-level caches is to use a bitmap to mark
nodes that have already been visited [1]. The bitmap
can often fit in the last-level cache, which prevents
many of those random accesses from touching off-chip
DRAM. These optimizations speed up the edge checks
but do not reduce the number of checks required.

Fig. 4. Breakdown of edges in the frontier for a sample search on
kron27 (Kronecker generated 128M vertices with 2B undirected
edges) on the 16-core system. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-130370.)

The theoretical minimum for the number of edges
that need to be examined in the best case is the num-
ber of vertices in the BFS tree minus one, since that
is how many edges are required to connect it. For the
example in Fig. 3, only 63,036,116 vertices are in the
BFS tree, so at least 63,036,115 edges need to be con-
sidered, which is about 1

67 th of all the edge examina-
tions that would happen during a top-down traversal.
This factor of 67 is substantially larger than the input
degree of 16 for two reasons. First, the input degree
is for undirected edges, but during a top-down search
each edge will be checked from both endpoints, dou-
bling the number of examinations. Secondly, there are
a large number of vertices of zero degree, which re-
duces the size of the main connected component and
also further increases the effective degree of the ver-
tices it contains. There is clearly substantial room for
improvement by checking fewer edges, although in the
worst case, every edge might still need to be checked.

Figure 4 zooms in on the edge check results of Fig. 3
for the sample search. This progression of neighbor
types is typical among the social networks examined.
During the first few steps, the percentage of claimed
children is high, as the vast majority of the graph is un-
explored, enabling most edge checks to succeed. Dur-
ing the next few steps, the percentage of failed chil-
dren rises, which is unsurprising since the frontier has
grown larger, as multiple valid parents are fighting over
children. As the frontier reaches its largest size, the
percentage of peer edges dominates. Since the frontier
is such a large fraction of the graph, many edges must
connect vertices within the frontier. As the frontier size
rapidly decreases after its apex, the percentage of valid
parents rises since such a large fraction of edges were
in the previous step’s frontier.

5
5Beamer, Asanović, and Patterson, “Direction-optimizing Breadth-first
Search”. 6

EDGEMAP working over all elements

EDGEMAP_DENSE G, U, F, C
result = {};
/* first loop parallel */
foreach i in [0, ..., |V(G)|] do

if C(i) // not in the BFS tree
then

foreach v in in_neighbours(i) do
if v ∈ U and F(v, i) then add i to result;
if not c(i) then break;

end
end

end
return result;

7

VERTEXMAP

VERTEXMAP U, F
result = {};
/* parallel loop */
foreach u ∈ U do

if F(u) then add u to result;
end
return result;

8

Performance measurements

Ligra scaling

108 109 1010

Num. Edges (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ra
tio

Ligra scaling

100 200 300 400
Number of workers

Pregel scaling

Table 1: 1B vertex binary tree shortest path

Pregel 20 seconds 300 Nodes
Ligra 2 seconds 1 Node 9

Navigating the maze of Graphs

Figure 1: The real performance of algorithms can be hard to find.6

6Satish et al., “Navigating the Maze of Graph Analytics Frameworks Using
Massive Graph Datasets”. 10

Navigating the maze of Graphs

Figure 2: Galois can implement Ligra simply.7

7Nguyen, Lenharth, and Pingali, “A Lightweight Infrastructure for Graph
Analytics”.

11

Questions?

Nice algo bits.

Graph diameter estimation.

Associate a bit vector with each
vertex for all BFS searches, and
bitwise OR the current vertex

vector with neighbours.
Vertices that change are on the
new multiBFS frontier. Store
the iteration number of the

last time a vertex changed it’s
vector. This is a lower bound

on centrality of that vertex, and
max(centrality) is the diameter.

12

	Introduction
	API
	Performance measurements
	Questions?

