
X-Stream: Edge-centric Graph Processing using
Streaming Partitions

Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel (SOSP’13)

Presented by: Stella Lau

24 October 2017



Motivation: scalable graph processing

Problem

Performance of large scale graph processing
⇒ Lack of access locality

Solution?

Large clusters (e.g. Pregel, Giraph, GraphLab)
⇒ Increased complexity and power consumption



Motivation: scalable graph processing

Problem

Performance of large scale graph processing
⇒ Lack of access locality

Solution?

Large clusters (e.g. Pregel, Giraph, GraphLab)
⇒ Increased complexity and power consumption



X-Stream: contributions

A system for scale-up graph processing for both in-memory and
out-of-core graphs on a single, shared-memory machine, using

1. an edge-centric scatter gather model

2. streaming partitions



Context: scatter-gather model
(Pregel, PowerGraph, etc.)

• Store state in vertices

• Vertex operations:

I Scatter updates over outgoing edges of vertex

I Gather updates from inbound edges of vertex



Vertex-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Vertex-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Vertex-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Vertex-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Vertex-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Problem: random access vs sequential access

RAM(1 core) SSD Magnetic Disk

0

500

1,000

1,500

2,000

2,500

3,000

567

22.5 0.6

2,605

667.69

328

R
ea

d
(M

B
/s

)

random sequential



Solution: edge-centric scatter-gather

Vertex-centric

for each vertex v

if v has update

for each edge e from v

scatter update along e

Edge-centric

for each edge e

if e.src has update

scatter update along e



Edge-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Edge-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Edge-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Edge-centric scatter gather: BFS

1

23

4

5 6

78

v

1
2
3
4
5
6
7
8

src dest

1 3
1 5
2 7
2 4
3 2
3 8
4 3
4 7
4 8
5 6
6 1
8 5
8 6

Example from SOSP’13 talk by Amitabha Roy



Gains from edge-centric model

• Edge table does not need to be sorted

• No index table

• Vertex-centric scatter-gather: EdgeData
RandomAccessBandwidth

• Edge-centric scatter-gather: Scatters×EdgeData
SequentialAccessBandwidth

• Sequential access bandwidth � random access bandwidth



Problem: random access to vertices



Solution

• Store vertices in fast storage

I In-memory: caches vs main-memory

I Out-of-core: main-memory vs SSD/Disk

• What if they don’t fit?

I Streaming partitions



Streaming partitions

1. Vertex set V : subset of vertices that fits in fast storage

2. Edge set: source ∈ V

3. Update list: dest ∈ V



Example partition

v1

1
2
3
4

src dest

2 4
1 3
4 8
4 3
3 2
2 7
3 8
4 7
1 5

v2

5
6
7
8

src dest

8 5
6 1
8 6
5 6



Implementation

• Scatter/gather over streaming partitions

• In-memory data structures: disk input, shuffling, disk output

• In-memory shuffle of updates: two buffers

1. Store updates from scatter phase

2. Store result of in-memory shuffle

• Parallelism: process partitions in parallel



Performance

• Evaluation: test 10 algorithms on real and synthetic graphs

• Performs well, except for traversals on large diameter graphs

I “... the diameter of real-world graphs only grows
sub-logarithmically with the number of vertices”

• Scalable with increasing number of I/O devices and cores



Comparison with Ligra

Ligra

• In-memory graph processing system designed for traversals

• Requires sorting and index list



Comparison with GraphChi

GraphChi

• Graph processing on a single machine

• Targets larger sequential bandwidth of SSD and disk

• Sorted shards, all vertices and edges must fit in memory



Future work: Chaos

• Builds on streaming partitions of X-Stream

• X-Stream: limited by bandwidth and capacity of single
machine

• Scale to cluster: process partitions in parallel



Summary

A system for processing large graphs on a single shared-memory
machine using

1. edge-centric scatter gather

2. sequential streaming partitions

Questions?



Summary

A system for processing large graphs on a single shared-memory
machine using

1. edge-centric scatter gather

2. sequential streaming partitions

Questions?



References

Joseph E Gonzalez et al. “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs.” In: OSDI. Vol. 12. 1. 2012, p. 2.

Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. “Graphchi:
Large-scale graph computation on just a pc”. In: USENIX. 2012.

Yucheng Low et al. “Graphlab: A new framework for parallel machine
learning”. In: arXiv preprint arXiv:1408.2041 (2014).

Grzegorz Malewicz et al. “Pregel: a system for large-scale graph
processing”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM. 2010, pp. 135–146.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. “X-stream:
Edge-centric graph processing using streaming partitions”. In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM. 2013, pp. 472–488.

Amitabha Roy et al. “Chaos: Scale-out graph processing from secondary
storage”. In: Proceedings of the 25th Symposium on Operating Systems
Principles. ACM. 2015, pp. 410–424.

Julian Shun and Guy E Blelloch. “Ligra: a lightweight graph processing
framework for shared memory”. In: ACM Sigplan Notices. Vol. 48. 8.
ACM. 2013, pp. 135–146.


