X-Stream: Edge-centric Graph Processing using Streaming Partitions

Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel (SOSP'13) Presented by: Stella Lau

24 October 2017

Motivation: scalable graph processing

Problem

Performance of large scale graph processing

 \Rightarrow Lack of access locality

Motivation: scalable graph processing

Problem

Performance of large scale graph processing

 \Rightarrow Lack of access locality

Solution?

Large clusters (e.g. Pregel, Giraph, GraphLab) \Rightarrow Increased complexity and power consumption

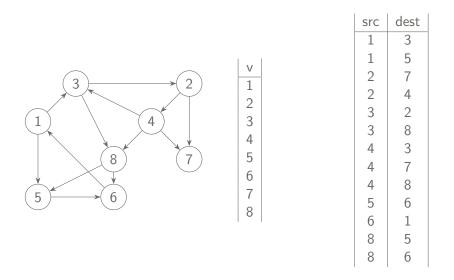
X-Stream: contributions

A system for scale-up graph processing for both in-memory and out-of-core graphs on a *single, shared-memory machine*, using

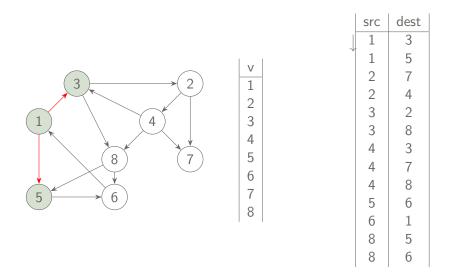
- 1. an edge-centric scatter gather model
- 2. streaming partitions

Context: scatter-gather model (Pregel, PowerGraph, etc.)

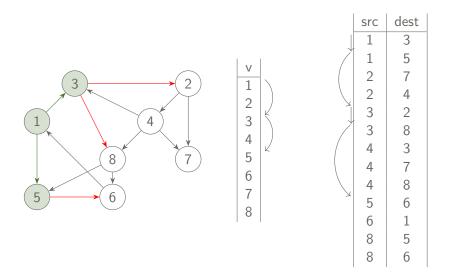
- Store state in vertices
- Vertex operations:
 - Scatter updates over outgoing edges of vertex
 - Gather updates from inbound edges of vertex

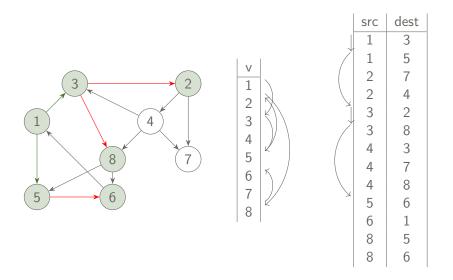


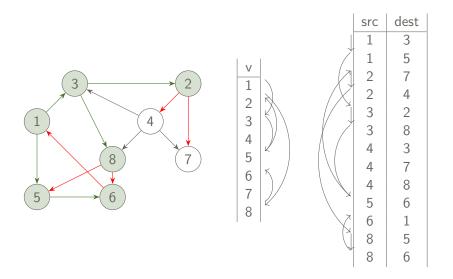
Example from SOSP'13 talk by Amitabha Roy



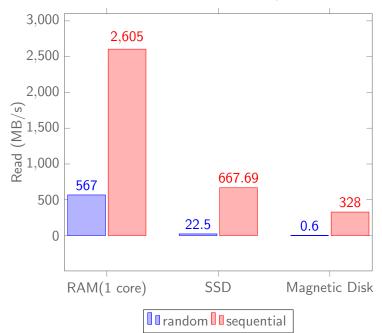
Example from SOSP'13 talk by Amitabha Roy







Problem: random access vs sequential access



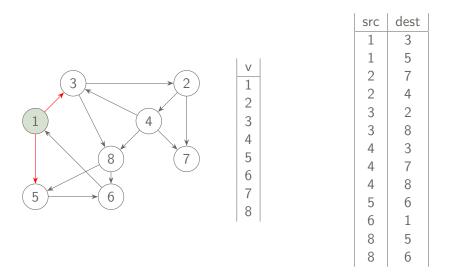
Solution: edge-centric scatter-gather

Vertex-centric

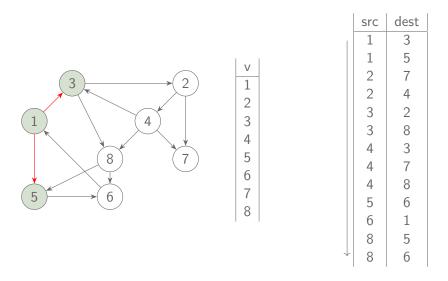
for each vertex v
if v has update
 for each edge e from v
 scatter update along e

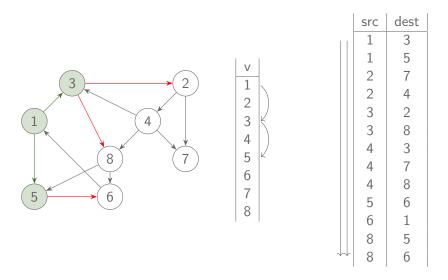
Edge-centric

for each edge e if e.src has update scatter update along e

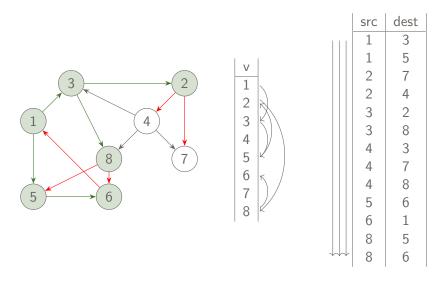


Example from SOSP'13 talk by Amitabha Roy





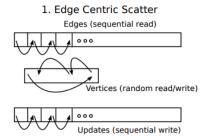
Example from SOSP'13 talk by Amitabha Roy



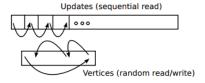
Gains from edge-centric model

- Edge table does not need to be sorted
- No index table
- Vertex-centric scatter-gather: <u>EdgeData</u> RandomAccessBandwidth
- Edge-centric scatter-gather: <u>Scatters×EdgeData</u> SequentialAccessBandwidth
- Sequential access bandwidth \gg random access bandwidth

Problem: random access to vertices



2. Edge Centric Gather



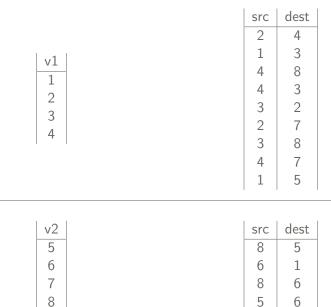
Solution

- Store vertices in fast storage
 - In-memory: caches vs main-memory
 - Out-of-core: main-memory vs SSD/Disk
- What if they don't fit?
 - Streaming partitions

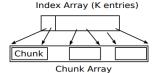
Streaming partitions

- 1. Vertex set V: subset of vertices that fits in fast storage
- **2**. Edge set: source $\in V$
- 3. Update list: dest $\in V$

Example partition



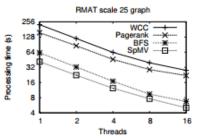
Implementation

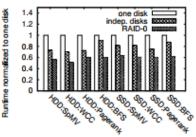


- Scatter/gather over streaming partitions
- In-memory data structures: disk input, shuffling, disk output
- In-memory shuffle of updates: two buffers
 - 1. Store updates from scatter phase
 - 2. Store result of in-memory shuffle
- Parallelism: process partitions in parallel

Performance

- Evaluation: test 10 algorithms on real and synthetic graphs
- Performs well, except for traversals on large diameter graphs
 - "… the diameter of real-world graphs only grows sub-logarithmically with the number of vertices"
- Scalable with increasing number of I/O devices and cores



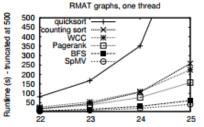


Comparison with Ligra

Ligra

- In-memory graph processing system designed for traversals
- Requires sorting and index list

Threads	Ligra (s)	X-Stream (s)	Ligra-pre (s)	
	BFS			
1	11.10	168.50	1250.00	
2	5.59	86.97	647.00	
4	2.83	45.12	352.00	
8	1.48	26.68	209.40	
16	0.85	18.48	157.20	
Pagerank				
1	990.20	455.06	1264.00	
2	510.60	241.56	654.00	
4	269.60	129.72	355.00	
8	145.40	83.42	211.40	
16	79.24	50.06	160.20	



Comparison with GraphChi

GraphChi

- Graph processing on a single machine
- Targets larger sequential bandwidth of SSD and disk
- Sorted shards, all vertices and edges must fit in memory

	Pre-Sort (s)	Runtime (s)	Re-sort (s)
Twitter pagerank			
X-Stream (1)	none	397.57 ± 1.83	_
Graphchi (32)	752.32 ± 9.07	1175.12 ± 25.62	969.99
Netflix ALS			
X-Stream (1)	none	76.74 ± 0.16	_
Graphchi (14)	123.73 ± 4.06	138.68 ± 26.13	45.02
RMAT27 WCC			
X-Stream (1)	none	867.59 ± 2.35	-
Graphchi (24)	2149.38 ± 41.35	2823.99 ± 704.99	1727.01
Twitter belief prop.			
X-Stream (1)	none	2665.64 ± 6.90	_
Graphchi (17)	742.42 ± 13.50	4589.52 ± 322.28	1717.50

Future work: Chaos

- Builds on streaming partitions of X-Stream
- X-Stream: limited by bandwidth and capacity of single machine
- Scale to cluster: process partitions in parallel

Summary

A system for processing large graphs on a *single shared-memory machine* using

- 1. edge-centric scatter gather
- 2. sequential streaming partitions

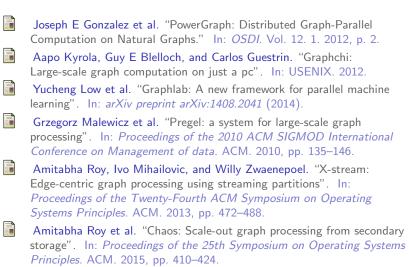
Summary

A system for processing large graphs on a *single shared-memory machine* using

- 1. edge-centric scatter gather
- 2. sequential streaming partitions

Questions?

References



Julian Shun and Guy E Blelloch. "Ligra: a lightweight graph processing framework for shared memory". In: *ACM Sigplan Notices*. Vol. 48. 8. ACM. 2013, pp. 135–146.