
X-Stream: Edge-centric Graph Processing using
Streaming Partitions

Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel (SOSP’13)

Presented by: Stella Lau

24 October 2017
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Problem

Performance of large scale graph processing
⇒ Lack of access locality

Solution?

Large clusters (e.g. Pregel, Giraph, GraphLab)
⇒ Increased complexity and power consumption
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X-Stream: contributions

A system for scale-up graph processing for both in-memory and
out-of-core graphs on a single, shared-memory machine, using

1. an edge-centric scatter gather model

2. streaming partitions



Context: scatter-gather model
(Pregel, PowerGraph, etc.)

• Store state in vertices

• Vertex operations:

I Scatter updates over outgoing edges of vertex

I Gather updates from inbound edges of vertex



Vertex-centric scatter gather: BFS
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Problem: random access vs sequential access
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Solution: edge-centric scatter-gather

Vertex-centric

for each vertex v

if v has update

for each edge e from v

scatter update along e

Edge-centric

for each edge e

if e.src has update

scatter update along e



Edge-centric scatter gather: BFS
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Gains from edge-centric model

• Edge table does not need to be sorted

• No index table

• Vertex-centric scatter-gather: EdgeData
RandomAccessBandwidth

• Edge-centric scatter-gather: Scatters×EdgeData
SequentialAccessBandwidth

• Sequential access bandwidth � random access bandwidth



Problem: random access to vertices



Solution

• Store vertices in fast storage

I In-memory: caches vs main-memory

I Out-of-core: main-memory vs SSD/Disk

• What if they don’t fit?

I Streaming partitions



Streaming partitions

1. Vertex set V : subset of vertices that fits in fast storage

2. Edge set: source ∈ V

3. Update list: dest ∈ V



Example partition
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Implementation

• Scatter/gather over streaming partitions

• In-memory data structures: disk input, shuffling, disk output

• In-memory shuffle of updates: two buffers

1. Store updates from scatter phase

2. Store result of in-memory shuffle

• Parallelism: process partitions in parallel



Performance

• Evaluation: test 10 algorithms on real and synthetic graphs

• Performs well, except for traversals on large diameter graphs

I “... the diameter of real-world graphs only grows
sub-logarithmically with the number of vertices”

• Scalable with increasing number of I/O devices and cores



Comparison with Ligra

Ligra

• In-memory graph processing system designed for traversals

• Requires sorting and index list



Comparison with GraphChi

GraphChi

• Graph processing on a single machine

• Targets larger sequential bandwidth of SSD and disk

• Sorted shards, all vertices and edges must fit in memory



Future work: Chaos

• Builds on streaming partitions of X-Stream

• X-Stream: limited by bandwidth and capacity of single
machine

• Scale to cluster: process partitions in parallel



Summary

A system for processing large graphs on a single shared-memory
machine using

1. edge-centric scatter gather

2. sequential streaming partitions

Questions?
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