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Motivation: scalable graph processing

Performance of large scale graph processing
= Lack of access locality
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Motivation: scalable graph processing

Performance of large scale graph processing
= Lack of access locality

Large clusters (e.g. Pregel, Giraph, GraphLab)
= Increased complexity and power consumption




X-Stream: contributions

A system for scale-up graph processing for both in-memory and
out-of-core graphs on a single, shared-memory machine, using

1. an edge-centric scatter gather model

2. streaming partitions



Context: scatter-gather model
(Pregel, PowerGraph, etc.)

e Store state in vertices
e Vertex operations:
» Scatter updates over outgoing edges of vertex

» Gather updates from inbound edges of vertex



Vertex-centric scatter gather: BFS
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Vertex-centric scatter gather: BFS
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Problem: random
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Solution: edge-centric scatter-gather

for each vertex v for each edge e
if v has update if e.src has update
for each edge e from v scatter update along e

scatter update along e



Edge-centric scatter gather: BFS
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Gains from edge-centric model

Edge table does not need to be sorted

No index table

EdgeData
RandomAccessBandwidth

Vertex-centric scatter-gather:

Scattersx EdgeData
SequentialAccessBandwidth

Edge-centric scatter-gather:

Sequential access bandwidth > random access bandwidth



Problem: random access to vertices

1. Edge Centric Scatter
Edges (sequential read)
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2. Edge Centric Gather

Updates (sequential read)
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ﬁ Vertices (random read/write)



Solution

e Store vertices in fast storage
» In-memory: caches vs main-memory
» Out-of-core: main-memory vs SSD/Disk

e What if they don't fit?

» Streaming partitions



Streaming partitions

1. Vertex set V: subset of vertices that fits in fast storage
2. Edge set: source € V
3. Update list: dest € V



Example partition
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Implementation

Index Array (K entries)
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Scatter/gather over streaming partitions
In-memory data structures: disk input, shuffling, disk output
In-memory shuffle of updates: two buffers

1. Store updates from scatter phase

2. Store result of in-memory shuffle

Parallelism: process partitions in parallel
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Performance

e Evaluation: test 10 algorithms on real and synthetic graphs
e Performs well, except for traversals on large diameter graphs

» “... the diameter of real-world graphs only grows
sub-logarithmically with the number of vertices"

e Scalable with increasing number of 1/O devices and cores
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Comparison with Ligra

e In-memory graph processing system designed for traversals

e Requires sorting and index list

Threads || Ligra(s)  X-Sweam (s) | Ligra-pre (s)
BFS

RMAT graphs, one thread
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Comparison with GraphChi

GraphChi

e Graph processing on a single machine

e Targets larger sequential bandwidth of SSD and disk

e Sorted shards, all vertices and edges must fit in memory

Pre-Sort (s) Runtime (s) Re-sort (s)

Twitter pagerank
X-Stream (1) none 397.57T+1.83 -
Graphchi (32) 752.32+9.07 1175.12+25.62 969.99

Netflix ALS
X-Stream (1) none 76.74+0.16 -
Graphchi (14) 123.73 =4.06 138.68 =26.13 45.02
RMAT27 WCC

X-Stream (1) none 867.59+2.35 -
Graphchi (24) 2149.38 +41.35 2823.99+704.99 1727.01

Twitter belief prop.
X-Stream (1) none 2605.64 = 6.90 -
Graphehi (17) 742.424+13.50 4589.524+322.28 1717.50



Future work: Chaos

e Builds on streaming partitions of X-Stream

e X-Stream: limited by bandwidth and capacity of single
machine

e Scale to cluster: process partitions in parallel



Summary

A system for processing large graphs on a single shared-memory
machine using

1. edge-centric scatter gather

2. sequential streaming partitions



Summary

A system for processing large graphs on a single shared-memory
machine using

1. edge-centric scatter gather

2. sequential streaming partitions



References

Joseph E Gonzalez et al. “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs.” In: OSDI. Vol. 12. 1. 2012, p. 2.

Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. “Graphchi:
Large-scale graph computation on just a pc”. In: USENIX. 2012.

Yucheng Low et al. “Graphlab: A new framework for parallel machine
learning”. In: arXiv preprint arXiv:1408.2041 (2014).

Grzegorz Malewicz et al. “Pregel: a system for large-scale graph
processing”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM. 2010, pp. 135-146.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. “X-stream:
Edge-centric graph processing using streaming partitions”. In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM. 2013, pp. 472-488.

Amitabha Roy et al. “Chaos: Scale-out graph processing from secondary
storage”. In: Proceedings of the 25th Symposium on Operating Systems
Principles. ACM. 2015, pp. 410-424.

Julian Shun and Guy E Blelloch. “Ligra: a lightweight graph processing
framework for shared memory”. In: ACM Sigplan Notices. Vol. 48. 8.
ACM. 2013, pp. 135-146.



