
PowerGraph
Distributed Graph-Parallel Computation 
on Natural Graphs

JOSHUA SEND

24/10/2017

LSDPO SESSION 3



Intuition for Graph Processing Systems
Overall goal
•efficiently compute over large graphs of data – key is 

distributing work

Typical tasks: Single Source Shortest Path, PageRank etc.

Approach
•Define computation graph on the data rather than passing 

graph through computation steps



Existing Systems – Pregel [1]

Input data graph
•Assign computation to each vertex, vertices to instances

Synchronous supersteps

Directed Edges



Existing Systems – GraphLab [2]

Also facilitates processing large graphs of data and 
distributes graph vertices to instances

No explicit message passing and directed edges

Asynchronous execution – no supersteps



Motivation
◦Power Law connectivity: P(d) ∝ d−α

◦Eg. Social networks, internet (α ≈ 2)



Natural Graphs



Contributions
1. Generalized “vertex program”

2. Distribute graph edge-by-edge rather than vertex-
by-vertex

3. Practical parallel locking



Generalized Vertex Program

• Collect data and 
aggregate

• Commutative, 
associative 
aggregator

Gather

• Perform 
operation on 
gathered data

Apply
• Disseminate to 

neighbors

• Activate their 
operation

Scatter



SSSP



Vertex Splitting
Standard approach – assign each vertex of graph to an instance – often requires 
‘ghosts’

Idea – assign each edge to an instance

Leads to vertices appearing on different instances

Parallelization of data gathering and scattering “within” one vertex as edges may 
be in different instances

Set of instances containing a particular vertex called replicas and randomly 
assign a master, rest are called mirrors

Master receives partial aggregations, applies vertex operation, sends changes to 
edges to scatter



Master, Mirrors



How to actually distribute Edges
3 different strategies

1. Random
◦ Deploy edge to instance based on hash

2. Greedy Heuristic
◦ Reduce number of replicas per vertex

◦ Requires estimate of sets of replicas per vertex



Heuristic Distribution
1. Oblivious

◦ Estimate sets from local information only
◦ Paper unclear on how exactly this works

2. Coordinated
◦ Keep distributed table of sets replicas per vertex

Tradeoff space: longer load time vs. fewer replicas & 
faster execution



Execution Stategies
Supports:
◦ Synchronized supersteps (à la Pregel), 

◦ Asynchronous

◦ Asynchronous + serializable utilizing parallel locking

Tradeoff space: predictability/determinism vs 
throughput vs runtime/convergence speed



Miscellaneous
Delta Caching 
◦ Update edges with deltas rather than rewriting values. If delta is 0, 

neighbor may not have to recompute

Fault Tolerance
◦ Checkpointing



Results
Partitioning scheme
◦ Random > oblivious > coordinated in terms of replication factor
◦ All faster than Pregel/Piccolo and GraphLab for synthetic natural graphs

Execution Strategy
◦ Synchronized: 3-8x faster implementing PageRank than on Spark per 

iteration
◦ Async: Even faster (authors don’t provide a direct comparison?)
◦ Async + Serializable: less throughput, converges faster (less 

recomputation)



Remarks
Paper’s details are hard to understand

Evaluation is a bit sloppy – missing some direct comparisons 
between execution strategies and combinations of 
partitioning and execution

Large tradeoff space, hard to navigate
oEg. Coordinated distribution can increase load times 4x

oAuthors highlight 60s vs 240s for random vs coordinated partitioning

oMeanwhile, SSSP on 6.5B edges takes 65s to run



Remarks
Solid theoretical foundation for partitioning heuristic

Very solid gains over prior systems, especially in tasks with 
natural graphs!



References
1. G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski: Pregel: A 

System for Large-Scale Graph Processing, SIGMOD, 2010.

2. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. Hellerstein: Distributed GraphLab: A 
Framework for Machine Learning and Data Mining in the Cloud, VLDB, 2012.

3. J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin: Powergraph: distributed graph-parallel 
computation on natural graphs. OSDI, 2012.

http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018/papers/malewicz_sigmod_2010.pdf
http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018/papers/low_VLDB_2012.pdf
http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018/papers/gonzalez_OSDI_2012.pdf

