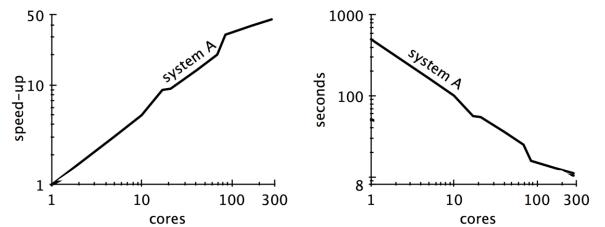
Scalability! But at what COST?


Frank McSherry, Michael Isard, Derek G. Murray

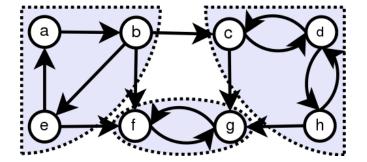
Alex Gubbay

What's Wrong With Distributed Systems Reporting?

- Scalability often touted as the most important feature
- Fail to evaluate absolute performance
- Direct distributed system design towards salability from better systems

NAIAD computation before (system A) and after (system B) optimisation [1]

COST – Configuration that **O**utperforms a Single Thread


- A distributed hardware configuration that outperforms a single threaded implementation.
- Investigate published performance of distributed systems and compare a reasonable implementation on a single core
- Consider total run time
- Some systems have unbounded COST!

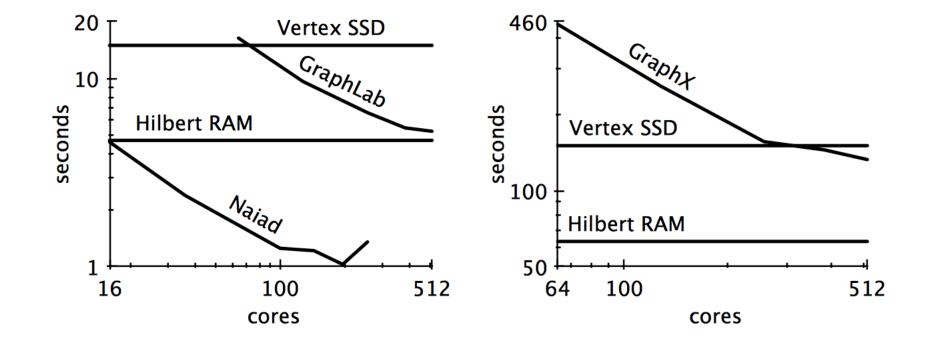
Comparisons Against Existing Systems

- PageRank
- Connected Components Label Propagation
- Implemented in C# on high end 2014 laptop

Two implementations

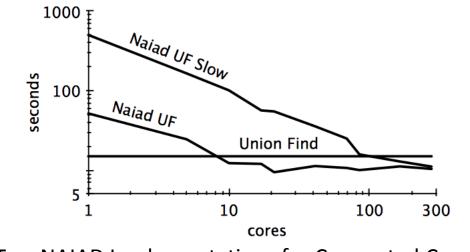
- 1. Basic
- 2. Optimised

name	twitter_rv [13]	uk-2007-05 [5, 6]
nodes	41,652,230	105,896,555
edges	1,468,365,182	3,738,733,648
size	5.76GB	14.72GB


Optimisations of the Baseline

- Better Graph Layout
 - Naïve implementation processes in vertex order
 - GraphLab and GraphX partition to reduce communication between workers [3,4]
 - Ordering on the single thread impacts cache performance
 - Edge ordering described by a Hilbert curve
- Better Algorithm
 - Label Propagation is not an optimal algorithm [5]
 - Union Find runs in $O(m \log n)$

Results and COST Evaluation - PageRank^[1,2,3,4]


Scalable System	Cores	Twitter (Secs)	UK Internet 2007 (Secs)
GraphChi	2	3160	6972
Stratosphere	16	2250	-
X-Stream	16	1488	-
Spark	128	857	1759
Giraph	128	596	1235
GraphLab	128	249	833
GraphX	128	419	462
Single Thread (SSD)	1	300	651
Single Thread (RAM)	1	275	-
Hilbert Order (SSD)	1	242	256
Hilbert Order (RAM)	1	110	-

Results and COST Evaluation - PageRank^[1,2,3,4]

Results and COST Evaluation – Connected Components

Scalable System	Cores	Twitter (Secs)	UK Internet 2007 (Secs)
GraphLab	128	242	714
GraphX	128	251	800
Single Thread (SSD)	1	153	417
Hilbert Order (SSD)	1	15	30

Two NAIAD Implementations for Connected Components

Conclusions

- Clearly need to consider absolute performance
 - Distributed systems have a surprisingly high overhead
 - "Important to distinguish scalability from efficient use of resources" [1]

But

- More to consider than computation time
 - Hardware environment cluster hardware vs laptop
 - Systems described are prototypes
- Qualitative advantages of distributed system
 - High availability, security, ecosystem integration

Questions?

References

- 1. F. McSherry, M. Isard and D. Murray: Scalability! But at what COST?, HOTOS, 2015
- 2. Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Is- ard, Paul Barham, and Mart in Abadi. *Naiad: A Timely Dataflow System*. SOSP 2013.
- 3. Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin. *PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs*. OSDI 2012.
- 4. Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, and Michael J. Franklin, and Ion Stoica. *GraphX: Graph Processing in a Distributed Dataflow Framework*. OSDI 2014.
- 5. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. *PEGASUS: Mining Peta-Scale Graphs*. ICDM 2009.