
Resilient distributed
datasets
Łukasz Dudziak

Motivation

 Bad support for applications which would like to reuse
intermediate results

 Either no mechanism for efficient reuse at all (i.e. only by using
external storage),

 Or possible only for specific computation patterns (e.g. support only
for iterative MapReduce)

 Very costly fault tolerance due to fine-grained nature of a
framework

Computational frameworks were inefficient when handling iterative
algorithms. Two main problems were identified by the authors (all
referred frameworks had at least one):

Proposed
solution

 Inefficient data reuse provide user with option to specify which
data should be cached in memory + later schedule tasks taking
data-locality into consideration

 Inefficient fault recovery represent memory in terms of data
source and coarse-grained transformations, i.e. care not about
data itself but how to get it

 Resilient distributed dataset (RDD) is an abstraction designed to
implement both

Proposed
solution

 RDDs:
 Are immutable

 Can be created from fault-tolerant data storage (e.g. HDFS) or by
applying coarse-grained transformation to another RDD

 Store list of their dependencies (other RDDs) and data partitioning
information

 Dependencies can be either wide or narrow

 Can be used to recover data in case of node failure

 Can be viewed as a DAG where each node is an intermediate result
and edges represent transformations

 Are executed lazily

 Are lightweight

Proposed
solution

Example of PageRank code written in spark and resulting DAG

Source: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al.

Evaluation

 The authors have shown that their system achieves significant
speedup comparing to Hadoop when running iterative algorithms

 The goal seems to be achieved

 It has also been shown that RDD abstraction is generic enough to
express many programming models

 So the criticism of existing frameworks has been addressed as well

 It has been shown that system based on RDDs can relatively
quickly recover in case of node failure

 Seems good too

However…

 When it comes to the recovery and fault-tolerance it is not clear if
RDDs really have met all requirements

 Although it has been shown that they are sufficient, efficiency of
the recovery depends on the actual DAG structure

 Section 6.3 does not provide any information whether presented
recovery time is average/best/worst case

 Recovery from RDD can be fast but it’s not guaranteed

 Authors have admitted that checkpointing can still be desired in
cases when recovery solely from RDD’s lineage may be expensive

 On the other hand, it may be enough to checkpoint only specific RDDs
so still better than saving global state of whole system

 In general: for me fault-tolerance could have been described more
in-detail since many things are not obvious

The End
Thank you for attention.

