
Resilient distributed
datasets
Łukasz Dudziak

Motivation

 Bad support for applications which would like to reuse
intermediate results

 Either no mechanism for efficient reuse at all (i.e. only by using
external storage),

 Or possible only for specific computation patterns (e.g. support only
for iterative MapReduce)

 Very costly fault tolerance due to fine-grained nature of a
framework

Computational frameworks were inefficient when handling iterative
algorithms. Two main problems were identified by the authors (all
referred frameworks had at least one):

Proposed
solution

 Inefficient data reuse  provide user with option to specify which
data should be cached in memory + later schedule tasks taking
data-locality into consideration

 Inefficient fault recovery  represent memory in terms of data
source and coarse-grained transformations, i.e. care not about
data itself but how to get it

 Resilient distributed dataset (RDD) is an abstraction designed to
implement both

Proposed
solution

 RDDs:
 Are immutable

 Can be created from fault-tolerant data storage (e.g. HDFS) or by
applying coarse-grained transformation to another RDD

 Store list of their dependencies (other RDDs) and data partitioning
information

 Dependencies can be either wide or narrow

 Can be used to recover data in case of node failure

 Can be viewed as a DAG where each node is an intermediate result
and edges represent transformations

 Are executed lazily

 Are lightweight

Proposed
solution

Example of PageRank code written in spark and resulting DAG

Source: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al.

Evaluation

 The authors have shown that their system achieves significant
speedup comparing to Hadoop when running iterative algorithms

 The goal seems to be achieved

 It has also been shown that RDD abstraction is generic enough to
express many programming models

 So the criticism of existing frameworks has been addressed as well

 It has been shown that system based on RDDs can relatively
quickly recover in case of node failure

 Seems good too

However…

 When it comes to the recovery and fault-tolerance it is not clear if
RDDs really have met all requirements

 Although it has been shown that they are sufficient, efficiency of
the recovery depends on the actual DAG structure

 Section 6.3 does not provide any information whether presented
recovery time is average/best/worst case

 Recovery from RDD can be fast but it’s not guaranteed

 Authors have admitted that checkpointing can still be desired in
cases when recovery solely from RDD’s lineage may be expensive

 On the other hand, it may be enough to checkpoint only specific RDDs
so still better than saving global state of whole system

 In general: for me fault-tolerance could have been described more
in-detail since many things are not obvious

The End
Thank you for attention.

