
Naiad: A Timely Dataflow
System

Derek G. Murray Frank McSherry
Rebecca Isaacs Michael Isard

Paul Barham Martín Abadi
MSR Silicon Valley

Presented by Jesse Mu (jlm95)

Background: dataflow programming

Batch processing

Batch processing

Batch processing

Count most popular
hashtags at a given time

Batch processing

Count most popular
hashtags at a given time ...

Batch processing

Batch processing

Must wait for all inputs to
be completed (= latency)

Stream processing (asynchronous)

Stream processing (asynchronous)

Pick out key words/mentions/relevant topics

Stream processing (asynchronous)

Real-time
access

Pick out key words/mentions/relevant topics

Background: types of data processing systems
● Batch processing (e.g. Pregel, CIEL)

○ High throughput, aggregate summaries of data
○ Waiting for batches introduces latency

● Stream processing (e.g. Storm, MillWheel)
○ Low-latency, near-realtime access to results
○ No synchronization/aggregate computation

● Iterative (graph-centric) computation
○ e.g. network data, ML

Background: types of data processing systems

Timely Dataflow
One-size-fits-all

● Batch processing (e.g. Pregel, CIEL)
○ High throughput, aggregate summaries of data
○ Waiting for batches introduces latency

● Stream processing (e.g. Storm, MillWheel)
○ Low-latency, near-realtime access to results
○ No synchronization/aggregate computation

● Iterative (graph-centric) computation
○ e.g. network data, ML

Background: types of data processing systems

Timely Dataflow
One-size-fits-all

Contributions
1. Timely dataflow, a dataflow computing model which supports batch, stream,

and graph-centric iterative processing
a. Supports common high-level programming interfaces (e.g. LINQ)

2. Naiad, a high-performance distributed implementation of the model
a. Faster than SOTA batch/streaming frameworks

Timely Dataflow supports Batch and Stream
Async event-based model

Nodes are always active.
Send and receive messages via

A.SendBy(edge, message, time)

B.OnRecv(edge, message, time)

Request and operate on notifications for batches

C.NotifyAt(time)

C.OnNotify(time)

A B C

Timely Dataflow supports Batch and Stream
Async event-based model

Nodes are always active.
Send and receive messages via

A.SendBy(edge, message, time)

B.OnRecv(edge, message, time)

Request and operate on notifications for batches

C.NotifyAt(time)

C.OnNotify(time)

A B C

Stream processing

Batch processing

A B
realtime output

batched output

a_out
rt_ou

t

b_out

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

Pass through
even numbers
only

A

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

this.SendBy(rt_out, msg, time)

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

this.SendBy(rt_out, msg, time) // Streaming

if (time not in state) // New time
state[time] = msg
this.NotifyAt(time)

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A

B

Pass through all
numbers; compute
min of each time

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

this.SendBy(rt_out, msg, time) // Streaming

if (time not in state) // New time
state[time] = msg
this.NotifyAt(time)

if (msg < state[time]) // New min
state[time] = msg

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

this.SendBy(rt_out, msg, time) // Streaming

if (time not in state) // New time
state[time] = msg
this.NotifyAt(time)

if (msg < state[time]) // New min
state[time] = msg

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A B
realtime output

batched output

A

B

Pass through all
numbers; compute
min of each time

a_out
rt_ou

t

b_out

function OnNotify(time) {
this.SendBy(batch_out,

state[time],
 time)}

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

state = {} // times -> running mins
function OnRecv(input_edge, msg, time) {

this.SendBy(rt_out, msg, time) // Streaming

if (time not in state) // New time
state[time] = msg
this.NotifyAt(time)

if (msg < state[time]) // New min
state[time] = msg

function OnRecv(input_edge, msg, time) {
if (msg % 2 == 0)

this.SendBy(a_out, msg, time)}

Pass through
even numbers
only

A B
realtime output

batched output

A

B

Pass through all
numbers; compute
min of each time

a_out
rt_ou

t

b_out

function OnNotify(time) {
this.SendBy(batch_out,

state[time],
 time)}

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

Node B, you’ve
seen all messages
for time 1

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

All messages for
time 1 delivered

A B
realtime output

batched output

a_out
rt_ou

t

b_out

Input
time numbers
1 9, 3, 2, 5, ...
2 3, 2, 7, 12, ...
...

All messages for
time 1 delivered

???

Progress tracking

Progress tracking

SendBy(_, _, 1)

Progress tracking

NotifyAt(1)SendBy(_, _, 1)

Progress tracking

NotifyAt(1)SendBy(_, _, 1)

SendBy(_, _, (1, 1))

Progress tracking

NotifyAt(1)SendBy(_, _, 1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))
NotifyAt((1, 2))

Progress tracking

NotifyAt(1)SendBy(_, _, 1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)SendBy(_, _, 1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)SendBy(_, _, 1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

SendBy(_, _, (1, 1))

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

SendBy(_, _, (1, 2))

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

NotifyAt((1, 2))

Sort by could-result-in order

NotifyAt(1)

NotifyAt((1, 2))
Send notification!

Sort by could-result-in order

NotifyAt(1)

Sort by could-result-in order

NotifyAt(1)
Send notification!

Sort by could-result-in order

Sort by could-result-in order

...a notification can be delivered only when no possible
predecessors of a timestamp exist

Sort by could-result-in order

...a notification can be delivered only when no possible
predecessors of a timestamp exist

(based on timestamps + graph structure)

Low vs High Level Interfaces

Low vs High Level Interfaces

SendBy(edge, message, time)

OnRecv(edge, message, time)

NotifyAt(time)

OnNotify(time)

Event-based system

Low vs High Level Interfaces

SendBy(edge, message, time)

OnRecv(edge, message, time)

NotifyAt(time)

OnNotify(time)

// 1a. Define input stages for the dataflow.
var input = controller.NewInput<string>();

// 1b. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.
var result = input.SelectMany(y => map(y))

 .GroupBy(y => key(y),
(k, vs) => reduce(k, vs));

// 1c. Define output callbacks for each epoch
result.Subscribe(result => { ... });

// 2. Supply input data to the query.
input.OnNext(/* 1st epoch data */);
input.OnNext(/* 2nd epoch data */);
input.OnCompleted();

Event-based system Common dataflow interfaces
(LINQ, Pregel)

Contributions
1. Timely dataflow, a dataflow computing model which supports batch, stream,

and graph-centric iterative processing
a. Supports common high-level programming interfaces (e.g. LINQ)

2. Naiad, a high-performance distributed implementation of the model
a. Faster than SOTA batch/streaming frameworks

Implementation: Naiad

Implementation: Naiad

Distributed Progress
Tracking

Each node has its own local
progress tracker, must be
conservative

Updates other nodes over
network as events finish

Distributed Progress
Tracking

Optimizations

Reduce small delays
micro-stragglers

Tweak TCP configuration

GC less often

Reduce backoff time to 1ms
after concurrent access to
shared memory

Optimizations

Fault Tolerance

Since vertices have dynamic
state, one failure -> all nodes
have to reset from checkpoint

System-wide synchronized
checkpoints

Tradeoff between how often to
log checkpoints and
performance

Fault Tolerance

Evaluation

Evaluation

Contributions
1. Timely dataflow, a dataflow computing model which supports batch, stream,

and graph-centric iterative processing
a. Supports common high-level programming interfaces (e.g. LINQ)

2. Naiad, a high-performance distributed implementation of the model
a. Faster than SOTA batch/streaming frameworks

My opinion

My opinion
● Computational model is theoretically sound

○ Iterative computation without modifying graph in e.g. CIEL (which has overhead)

● Evaluation good too, though dramatic speedups likely better than real-world
applications

● Fine-grained control over logging for fault tolerance/throughput tradeoff
seems annoying

● But…

What problem does Naiad solve?

What problem does Naiad solve?
“While it might be
possible to assemble the
application in Figure 1 by
combining multiple
existing systems,
applications built on a
single platform are
typically more efficient,
succinct, and
maintainable.”

What problem does Naiad solve?
“While it might be
possible to assemble the
application in Figure 1 by
combining multiple
existing systems,
applications built on a
single platform are
typically more efficient,
succinct, and
maintainable.”

My opinion
● Computational model is theoretically sound

○ Iterative computation without modifying graph in e.g. CIEL (which has overhead)

● Evaluation good too, though dramatic speedups likely better than real-world
applications

● Fine-grained control over logging for fault tolerance/throughput tradeoff
seems annoying

● But…
○ For all but especially complex systems requiring graph + stream + batch, existing systems

probably work just fine + have better infrastructure

Naiad: A Timely Dataflow
System

Derek G. Murray Frank McSherry
Rebecca Isaacs Michael Isard

Paul Barham Martín Abadi
MSR Silicon Valley

Presented by Jesse Mu (jlm95)

