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Background: types of data processing systems
● Batch processing (e.g. Pregel, CIEL)

○ High throughput, aggregate summaries of data
○ Waiting for batches introduces latency

● Stream processing (e.g. Storm, MillWheel)
○ Low-latency, near-realtime access to results
○ No synchronization/aggregate computation

● Iterative (graph-centric) computation
○ e.g. network data, ML
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Contributions
1. Timely dataflow, a dataflow computing model which supports batch, stream, 

and graph-centric iterative processing
a. Supports common high-level programming interfaces (e.g. LINQ)

2. Naiad, a high-performance distributed implementation of the model
a. Faster than SOTA batch/streaming frameworks
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Async event-based model

Nodes are always active.
Send and receive messages via

A.SendBy(edge, message, time)

B.OnRecv(edge, message, time)

Request and operate on notifications for batches

C.NotifyAt(time)

C.OnNotify(time)
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Sort by could-result-in order

...a notification can be delivered only when no possible
predecessors of a timestamp exist

(based on timestamps + graph structure)
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Low vs High Level Interfaces

SendBy(edge, message, time)

OnRecv(edge, message, time)

NotifyAt(time)

OnNotify(time)

// 1a. Define input stages for the dataflow.
var input = controller.NewInput<string>();

// 1b. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.
var result = input.SelectMany(y => map(y))

    .GroupBy(y => key(y),
(k, vs) => reduce(k, vs));

// 1c. Define output callbacks for each epoch
result.Subscribe(result => { ... });

// 2. Supply input data to the query.
input.OnNext(/* 1st epoch data */);
input.OnNext(/* 2nd epoch data */);
input.OnCompleted();

Event-based system Common dataflow interfaces
(LINQ, Pregel)
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Each node has its own local 
progress tracker, must be 
conservative

Updates other nodes over 
network as events finish

Distributed Progress
Tracking
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Reduce small delays
micro-stragglers

Tweak TCP configuration

GC less often

Reduce backoff time to 1ms 
after concurrent access to 
shared memory

Optimizations



Fault Tolerance



Since vertices have dynamic 
state, one failure -> all nodes 
have to reset from checkpoint

System-wide synchronized 
checkpoints

Tradeoff between how often to 
log checkpoints and 
performance

Fault Tolerance
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○ Iterative computation without modifying graph in e.g. CIEL (which has overhead)

● Evaluation good too, though dramatic speedups likely better than real-world 
applications

● Fine-grained control over logging for fault tolerance/throughput tradeoff 
seems annoying

● But…
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My opinion
● Computational model is theoretically sound

○ Iterative computation without modifying graph in e.g. CIEL (which has overhead)

● Evaluation good too, though dramatic speedups likely better than real-world 
applications

● Fine-grained control over logging for fault tolerance/throughput tradeoff 
seems annoying

● But…
○ For all but especially complex systems requiring graph + stream + batch, existing systems 

probably work just fine + have better infrastructure
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