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ABSTRACT
Can ideas and techniques from machine learning be leveraged
to automatically generate “good” routing configurations? We
investigate the power of data-driven routing protocols. Our re-
sults suggest that applying ideas and techniques from deep re-
inforcement learning to this context yields high performance,
motivating further research along these lines.

1. INTRODUCTION
Applying machine learning to computational challenges is

prevalent in numerous areas in computer science (AI, com-
puter vision, graphics, NLP, comp-bio, and beyond). Com-
puter networking, in contrast, has largely withstood the ML
tide until recently. Recent advances suggest that this might
be changing [22, 32, 31].

We ask whether data-driven protocol design [22] can im-
prove upon today’s approach in the context of the fundamental
networking challenge of optimizing routing configurations.
We set out to answer this question. We report below on initial
results and high-level insights from this ongoing exploration.

A rich body of literature on (multicommodity [42, 21, 7, 10,
28, 15, 5]) flow optimization establishes that for any given net-
work topology and specification of “traffic demands” between
communicating end-points, optimal routing configurations
can be efficiently computed for a broad variety of optimiza-
tion objectives [15, 21, 42, 5, 7, 10, 28]. Unfortunately, a
routing configuration that guarantees high performance for
specific traffic conditions can fail miserably in maintaining
good performance when traffic conditions change.

Traditional routing schemes address this challenge in two
manners: (1) Optimizing routing with respect to past traffic
conditions, with the hope that good routing configurations
for past-observed traffic conditions will also fare well in the
future, and (2) optimizing static routing configurations with
respect to a range of feasible traffic scenarios [15, 10, 28,
7]. Intuitively, ML-based approaches present a third option:
leveraging (implicit) information in past traffic conditions to
learn good routing configurations for future conditions.

In our investigation of the power of “data-driven routing”,
we contend with high-level questions regarding the relevant
learning paradigm and the proper representation of the inputs
and outputs.

Learning the next input or learning routing configura-
tions directly? The main challenge in our routing context
is that traffic demands are unknown to the decision maker in
advance. However, a realistic assumption is that the history of
traffic demands contains some information regarding future
traffic patterns (e.g., changes in traffic across times of day, the
skewness of traffic, whether certain end-hosts communicate
often, etc.). A natural approach is thus to continuously ob-
serve traffic demands to learn how these evolve, and optimize
routing with respect to our predictions. In machine learning
terms, this is a supervised learning task [38].

We evaluate several supervised learning schemes for pre-
dicting traffic demands. Our preliminary results are discour-
aging, indicating that supervised learning might be ineffective
if the traffic conditions do not exhibit very high regularity.
We hence turn our attention to a different approach: apply-
ing reinforcement learning [44] to routing. Now, instead of
attempting to learn traffic demands and optimizing routing
with respect to our predictions, the goal is to directly learn a
good mapping from the observed history of traffic demands to
routing configurations. Our results suggest that this approach
is much more promising, yet realizing effective reinforcement
learning in our context requires care, as discussed next.

What should the output of the learning scheme be? We
observe that the routing domain poses significant challenges
to realizing the data-driven protocol design approach. A
key challenge is that the natural “output” of a (general) rout-
ing scheme is a collection of rules specifying how traffic
is forwarded from each source to each destination, whose
naive representation involves a very large set of parameters
(as opposed to, e.g., selecting a single action from a fairly
small set [31, 32]). Our results indicate that this can ren-
der learning slow and ineffective. We hence devise methods
for constraining the size of the output without losing “too
much” in terms of expressiveness of routing configurations.
We leverage ideas from the literature on hop-by-hop traffic
engineering [34, 48, 15] to efficiently learn (via reinforcement
learning) experimentally good routing configurations. Our
preliminary findings suggest that our approach is a promising
direction for improving upon today’s routing schemes.

We believe that our investigation of data-driven routing has
but scratched the surface of this important subject (in terms of
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identifying the right approaches and machinery, conducting
more realistic simulations and real-world evaluations). Our
results motivate the further exploration of this idea in a variety
of contexts (data centers, WANs, ISP networks, interdomain
routing, and more).

2. ROUTING MODEL
Informally, in our framework, a decision maker (network

operator / automated system) repeatedly selects routing con-
figurations for the network. Traffic conditions might vary
and routing decisions are oblivious to future traffic demands.
Our focus is on the conventional optimization objective of
minimizing link over-utilization (a.k.a. minimizing conges-
tion) from traffic engineering literature [15, 7, 10, 28]. We
formalize our framework below.

Network. We model the network as a capacitated directed
graph G = (V,E, c), where V and E are the vertex and edge
sets, respectively, and c : E → R+ assigns a capacity to each
edge. Let n denote the number of vertices in V and Γ(v)
denote vertex v’s neighboring vertices in G.

Routing. A routing strategy R for the network specifies,
for each source vertex s and destination vertex t how traf-
fic from s to t that traverses v is split between v’s neigh-
bors. Thus, a routing strategy specifies, for each vertex v and
source-destination pair (s, t) a mapping from v’s neighbors
to values in the interval [0, 1],Rv,(s,t) : Γ(v)→ [0, 1], such
that Rv,(s,t)(u) is the fraction of traffic from s to t travers-
ing v that v forwards to its neighbor u. We require that for
every s, t ∈ V and v 6= t,

∑
u∈Γ(v)Rv,(s,t)(u) = 1 (no

traffic is blackholed at a non-destination), and also for every
s, t ∈ V ,

∑
u∈Γ(v)Rt,(s,t)(u) = 0 (all traffic to a destination

is absorbed at that destination).
We say that a routing strategy R is loop-free if for every

source-destination pair (s, t) and for every cycle of edges C,
there must be some edge (u, v) ∈ C such thatRu,(s,t)(v) = 0
(i.e., traffic never traverses the same point twice).

Induced flows of traffic. A demand matrix (DM) D is a
n × n matrix whose (i, j)’th entry Di,j specifies the traffic
demand between source i and destination j. Observe that any
demand matrix D and a loop-free routing strategyR induce a
flow of traffic in the network, as explained next; Traffic from
every source s to destination t is split amongst s’s neighbors
according toRs,(s,t). Similarly, traffic from s to t traversing
a neighbor of s, v, is split amongst v’s neighbors according
toRv,(s,t). Loop-freeness guarantees that all traffic leaving s
will reach t without cycling in the network.

How good is a traffic flow? We adopt the classical objective
function of minimizing link (over)utilization (also termed
congestion [15]) from traffic engineering literature [15, 10,
7, 28], though our approach can easily be extended to other
objective functions. The link utilization under a specific
multicommodity flow f is maxe∈E fe

c(e) , where fe is the total
amount of flow traversing edge e under flow f .

We point out that for any given demand matrix, computing

a multicommodity flow f that minimizes link utilization can
be executed in a computationally-efficient manner via linear
programming [21, 7, 15]. Our focus, in contrast, is on the
realistic scenario where the DM is not known beforehand.

Routing future traffic demands. In our framework, time is
divided into consecutive intervals, called “epochs”, of length
δt (δt is determined by the network operator). At the begin-
ning of each epoch t, the routing strategyRt for that epoch
is decided. Rt can depend only on the history of past traffic
patterns and routing strategies (i.e., from epochs 1, . . . , t−1).

We make two simplifying assumptions: (1) that the demand
matrix is fixed within each time epoch, and (2) that demand
matrices can be inferred after the fact (e.g., via network mea-
surements). We leave the investigation of data-driven routing
under more complex traffic patterns (e.g., capturing IP flows
entering and leaving within each epoch) and of information-
constrained routing decisions (e.g., only relying on partial
information about the traffic demands) to the future. As dis-
cussed below, studying this simple setting already gives rise
to interesting insights.

After selecting the routing strategy Rt for epoch t, the
demand matrix for epoch t, and the associated cost, in terms
of maximum link-utilization, are revealed. The objective of
the decision maker is to select routing strategies in a manner
that consistently results in low link over-utilization.

3. WHAT TO LEARN?
Our underlying assumption is the existence of some reg-

ularity in the DMs, and the purpose of the investigation be-
low is exploring ideas for how such regularity can be in-
ferred/leveraged to optimize routing with respect to future
DMs. We consider two different manifestations of regularity—
embedding deterministic regularity into the DM sequence and
drawing DMs from a fixed probability distribution—and two
high-level learning approaches—supervised learning and re-
inforcement learning.

3.1 Supervised Learning Approach
Our goal is to extract “good” routing strategies from past

observations. Since for a given demand matrix (DM), an
optimal routing strategy is efficiently computable, a natural
approach is to repeatedly try to predict (i.e., learn) the next
DM and then compute an optimal routing strategy for that
DM. In machine learning terms, this translates to a supervised
learning problem.

Supervised learning. A supervised learning task involves
a sample space X and a labeling space Y . An algorithm A
for the task is a function mapping values in X to labels in
Y . Given a set of samples and their true labels {(xi, yi)} ∈
X ×Y , the goal is to identify a mapping that produces correct
labels for new samples, drawn from the same distribution as
the data. How good/bad a mapping fares is quantified in terms
of a loss function L : Y × Y → R. Intuitively, for any pair
of labels (y1, y2), L(y1, y2) represents the cost of predicting,
for a given sample, the label y2 instead of the correct label y1.
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Figure 1: Representative Results for Supervised Learning (using NAR-NN with k = 10 and q = 5)

See [38] for a detailed exposition of supervised learning.
We consider the following supervised learning approach

to routing: the learning algorithm observes the history of
DMs up to the current epoch, and predicts the DM for the
upcoming epoch. This prediction is then used to generate an
optimal routing strategy with respect to the predicted DM.
When is employing this scheme a good idea? To answer this
question, we evaluate several supervised learning schemes
for predicting the next DM on different traffic patterns.

Generating DM sequences for our experiments. We next
discuss how traffic patterns are generated in our experiments.
We consider two standard schemes for generating DMs: the
(deterministic) gravity model [39] and the (probabilistic) bi-
modal model [33]. Intuitively, the former captures scenarios
in which communication between end-points is proportional
to their outgoing bandwidths and the latter captures scenarios
in which communication end-points are divided into small
flows (mice) and large flows (elephants). We also consider
“sparsifications” of gravity/bimodal DMs generated by select-
ing, uniformly at random, a p-fraction of the communicating
pairs, for some choice of p ∈ [0, 1], and removing the traffic
demands of all other pairs from consideration. We refer to p
as the sparsity of the DM.

Our experiments require generating sequences of DMs,
specifying a DM for each time epoch. We examine two
classes of DM sequences:

Class I: DM sequences in which the next DM is determin-
istically derived from past DMs. One example for such a
DM sequence is “a cycle of DMs”, in which the DM in each
epoch belongs to a fixed set of q DMs, D0, . . . , Dq−1 such
that if Dj is the DM in epoch t− 1 then Dj+1 modulo q is the
DM in epoch t. D0, . . . , Dq−1 in our experiments are sparsi-
fied (for varied values of p) gravity/bimodal DMs (for varied
values for parameters of the bimodal model). Cycles of DMs
might capture, e.g., the scenario that the traffic demands at a
certain time of day are rather similar across days. See discus-
sion of such temporal consistencies in ISP networks in [16].
Another example of a DM sequence that, though more arti-

ficial, also exhibits high regularity (and so is interesting to
study) is when each DM is the average of the previous q DMs
(for some fixed q > 0). Our experiments evaluate supervised
learning schemes on DM cycles of sizes q = 5, 10, 15, 20,
and DM sequences in which each DM is the average over the
previous q = 5, 10, 15, 20 DMs.

Class II: DM sequences in which each DM is independent
of the previous DMs. The DM for each epoch is now drawn
independently from a fixed probability distribution over DMs,
namely sparsified gravity/bimodal DMs. We point out that
such traffic patterns are commonly used in evaluations of
data center architectures and protocols [24, 4, 18, 49] as
traffic in data centers is often viewed as highly skewed and
unpredictable [19, 17].

Supervised learning schemes. Following the recent suc-
cesses of deep neural networks (DNNs) [27, 37, 40]), we
evaluate 3 different DNN architectures. The input to all three
architectures is the k most recent observed DMs and the out-
put is a DM. We examine different values of k (5, 10, and
20). We use the Frobenius (or l2) norm [20] to quantify the
quality of an output with respect to the actual DM. The three
architectures differ in the structure of the neural network in-
terconnecting the input layer (representing k-long histories
of DMs) and output layer (representing the next DM). We
evaluate (1) FCN, a 3-layered fully-connected network, (2)
CNN, a 4-layered convolutional neural-network [29], and (3)
NAR-NN, a nonlinear auto-regressive model [11], realized
via a 4-layered neural network that, for input demand matri-
ces D1, . . . , Dk, learns a k-vector α = (α1, . . . , αk) and an
n× n matrix β, and outputs the DM

∑
i αiDi + β.

Evaluation framework. We experiment with gravity and
bimodal DMs of various sizes (9×9, 12×12, 23×23, 30×30,
50 × 50, and 100 × 100) under various choices of sparsity
levels p = 0.3, 0.6, 0.9, 1 and of values of per vertex outgoing
bandwidths (ranging from 10’s of MB to 10’s of GB). We
consider various DM sequence lengths for training and testing
the model (ranging from a few 10’s to few 100’s of DMs). We



generate, for each choice of parameter assignment to q, p, k
and sequence length, a training set of 10 DM sequences and a
test set of 3 DM sequences. We define a learning epoch as a
full traversal of the training set. We train each neural network
for 2000 learning epochs.

Results. Our experimental results (for the test DM se-
quences) show that for DM sequences that exhibit determinis-
tic regularity, namely, cycles of DMs and “averaged DMs”,
only the NAR-NN performs fairly well and only for specific
relations between the examined history (k) and the size of
the cycle / number of DMs averaged over (q). Specifically,
when q ≤ k, NAR-NN well-approximates the next DM for
cycles of DMs, and performs well on averaged DMs. NAR-
NN continues to perform reasonably well on averaged DMs
when q > k, but fails on cycles of DMs for q > k. All 3
architectures failed (quite miserably) to approximate the next
DM for randomly generated DMs (which is not surprising,
as there are no temporal correlations between DMs in the
sequence).

We present representative results for NAR-NN on a network
G with 30 vertices. We plot the loss, in terms of distance of
the predicted DM from the actual DM (y-axis), over the num-
ber of learning epochs (x-axis). Figure 1b and Figure 1a show
that the model succeeds in learning the next DM when using
the averaged and cyclic DM sequence generation. Figure 1c
demonstrates failure in learning the next DM when drawn
from a probability distribution.

3.2 Reinforcement Learning Approach
We next investigate the application reinforcement learning

to routing-strategy selection. Instead of attempting to learn
the next DM and optimizing the routing strategy with respect
to that DM, the goal now is to directly learn a good mapping
from observed DMs to routing strategies.

Reinforcement learning. In the reinforcement learning
framework, an agent repeatedly interacts with an environment.
Time is divided into discrete time slots t = 1, 2, 3, . . .. At the
beginning of each time slot t, the agent observes the current
state st−1 of the environment and selects an action at from
a fixed set of actions. Once the agent chooses action at, the
state of the environment changes to st and the agent receives
a reward rt (a numerical value) signifying how good/bad
the action he took was. The goal of the agent is to learn a
mapping π from the set of possible states S to the space of
actions A (i.e., π : S → A) that fares well with respect to
the objective of maximizing the expected discounted reward
E[
∑
t γ

trt] for a predetermined γ > 0, called the discount
factor. See [44] for a detailed exposition of reinforcement
learning.

Routing via reinforcement learning. Routing-strategy se-
lection can be easily cast as a reinforcement learning task as
follows. At the beginning of each time epoch t, the opera-
tor/system (agent) decides on a routing strategy Rt for that
epoch based on the routing strategies and DMs in the most
recent k time epochs, which constitute the observed state of

the environment at that point. Then, the state changes as the
DM for epoch t, Dt, is revealed and the reward rt = − ct

OPTt

is received, where ct is the max-link-utilization under Rt
for Dt and OPTt is the optimal max-link-utilization with
respect to Dt (rt thus captures the ratio between achieved
performance and optimal performance). The goal is to learn
a mapping from k-long histories of DMs to routing strategies
that maximizes the expected discounted reward, as formu-
lated above. We explore the power of this approach in the
following sections.

4. REPRESENTING THE OUTPUT
We observe that, in contrast to other recent applications

of ML to networking [31, 32], learning routing strategies
involves generating neural networks with very large output
layers (containing, e.g., thousands of output nodes even for
a communication network of but tens of vertices). Consider,
e.g., the representation of a routing strategy described in
Section 2. This representation involves |V |2 · |E| variables,
where |V | and |E| are the sizes of the network graph’s vertex
set and edge set, respectively. We show below that even
for constrained routing strategies of much smaller sizes, a
(“vanilla”) reinforcement learning approach for predicting the
complete routing strategy fails to attain good performance
within reasonable time.

We restrict our attention to destination-based routing strate-
gies, i.e., routing strategies in which the splitting ratios at
each vertex u with respect to any destination d are the same
across all possible sources s. Observe that any such routing
strategyRS can be represented by |V | · |E| values (i.e., |V |
times smaller than unconstrained routing strategies). We use
a state-of-the art continuous-control reinforcement-learning
algorithm, TRPO [40] (also used in [31]), applied to a 3-
layered fully-connected neural network, to learn the mapping
π from k-long histories of DMs to a routing strategy RS.
The real-valued outputs generated by the deep neural network
are turned into per vertex traffic-splitting ratios by applying,
for each vertex in the communication network u, the soft-
max function [9] to the outputs corresponding to u’s outgoing
edges.

Loop-freeness of the resulting routing strategy is enforced
via the following procedure: For each source-destination pair
(s, t), emulate the transmission of 1 unit of flow from s to t
in consecutive iterations, as described next. s first splits the
unit of flow between its neighboring vertices according to the
routing strategy. Then, each neighbor splits its share of the
unit of flow between its neighbors, and so on. Keep track, for
each edge e, of the total volume of traffic fe that traversed
that edge in all iterations thus far, termed “the total flow on
e”. Continue this process until the entire unit of flow arrives
at the destination t. Then, set, for each edge e = (u, v), the
splitting ratio on e, Ru,(s,t)(v), to be the ratio between the
total flow on e, fe, and the sum of all total flows on edges
leaving u.

Evaluation. We adapt the open-source implementation of
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elephant flows

Figure 2: Representative Results for softmin-Routing

TRPO [40] provided by OpenAI [13] to the task of learning
routing-strategies. We begin our evaluation with a seemingly
easy target: learning the splitting ratios for a 12-vertices,
32-edges network (taken from [25]), and (sparsified) gravity
DMs. We train a 3-layered fully-connected network over 7
sequences of gravity DMs of length 60 and evaluate (test) the
neural network on 3 such sequences. We repeat this process
for sparsity levels 0.3, 0.6, and 0.9. We use k = 10 (the
length of the history of past DMs received as input). We
compute the optimal congestion using the CPLEX [2] LP
solver.

The training phase involves generating, from every se-
quence of DMs of length 60, 50 sequences of 10 consecutive
DMs (representing ten-long histories of DMs), by grouping
DMs 1−10, 2−11, etc. Training the neural network on each
of these “histories of DMs” involves evaluating the neural
network 30 times in parallel (and so 1, 500 iterations per DM
sequence and 10, 500 overall). We refer to one execution of
this process as a “learning epoch”.

Our results (omitted due to space constraints) suggest that
this approach leads to slow and ineffective learning; e.g., even
after more than 700 learning epochs, the produced routing
strategies were still over 9x away from the optimum, in terms
of max-link-utilization. As shown below, routing strategies
that fare significantly better can be generated much quicker.
We hypothesize that the large number of output parameters
renders efficient learning very challenging. We thus seek a
class of routing policies that can be more concisely repre-
sented yet is still rich enough to attain high performance.

5. LEARNING SOFTMIN ROUTING
We explore the following approach: instead of learning

splitting ratios directly, learn per-edge weights, and then use
these weights to generate a routing strategy. Under this ap-
proach, the output of the neural network is of size |E| (as
opposed to |V |2 × |E| and |V | × |E| for unrestricted and

destination-based routing policies, respectively).
Generating forwarding rules from link weights is a classical

approach to routing [15, 48, 34]. We resort to the following
approach:

The softminγ value for a vector of r coordinates α =
(α1, α2, . . . , αr), for γ > 0, is the vector (also of r coor-
dinates) softminγ(α)i = e−γαi∑r

i=1 e
−γαi , i ∈ 1, . . . , r. Ob-

serve that softmin(α) can be regarded as a probability dis-
tribution (as the sum of all coordinates necessarily equals
1).

Consider a specific assignment of per-edge weights w =
{we}e∈E , a specific edge (u, v) ∈ E, and a specific traffic
destination d. Observe that, when viewing weights as dis-
tances, w determines the length of the shortest path from
vertex u to vertex d that goes through u’s immediate neighbor
v. Let SPw(v, u, d) denote this length. Given a set of such
per-neighbor distances for a vertex u, the softmin function
can be applied to generate a probability distribution across
these neighbors, which can be interpreted as u’s splitting
ratios for traffic destined for d. We refer to this scheme as
“softmin-routing”. The higher the choice of γ to plug into the
softmin function the closer the resulting routing scheme is to
shortest path routing. We set γ = 2 in our experiments. We
enforce loop-freeness of the routing strategy by applying the
procedure described in Section 4.

Our reinforcement learning scheme maps k-long histories
of DMs to per-edge link weights. The reward is computed by
turning these weights into traffic splitting ratios and comput-
ing the max-link-utilization of the resulting routing strategy
with respect to the next DM. We realize this learning scheme
via a 3 layers fully-connected network.

We benchmark our results against three alternative non-ML-
based approaches to computing routing strategies: (1) Prev:
optimizing softmin routing with respect to the most recent
DM, (2) Avgk, optimizing softmin routing with respect to the



k most recent DMs, and (3) Oblivious, the optimal oblivious
routing scheme [7] (which does not depend on the history of
DMs at all). 1

Evaluation. We consider a communication network with
12 vertices and 32 edges.2 We use the adaptation of [13] dis-
cussed in Section 4 to train a 3-layered fully-connected neural
network to generate the weights for softmin routing. We train
the neural network on 7 sequences of gravity and bimodal
DMs of length 60 each, and tested on 3 such sequences. For
gravity DM, the above process is repeated per sparsity levels
0.3, 0.6, and 0.9. For bimodal DMs the sparsity level is p = 1
and the percentage of large (elephant) flows amongst the com-
municating pairs is varied: 20/40/60% of all pairs. We set
k = 10 and compute the optimal flow via the CPLEX [2] LP
solver.

We show in Figure 2a representative results for gravity
DMs and in Figure 2b representative results for bimodal based
DMs. The figures plot the ratio between the performance of
the resulting routing strategies (for the test DM sequences), in
terms of averaged max-link-utilization (congestion), and the
optimum congestion. Interestingly, oblivious routing outper-
forms the other two baselines. Observe that softmin-routing
gets very close to oblivious routing’s performance for gravity
DM sequences (and could perhaps outperform it with more
training), and significantly outperforms oblivious routing for
bimodal DM sequences.

6. RELATED WORK
Traffic engineering Traffic engineering (TE) is fundamental
to networking, and hence vastly researched. Results on TE
range from routing in legacy, OSPF/ECMP networks [15,
10] to datacenter networks [3] and backbone networks [23].
Softmin routing is inspired by the literature on TE via hop-by-
hop routing in IP networks e.g., PEFT [48] and HALO [34].
We find softmin routing especially convenient to use as it
involves fairly simple splitting traffic across next-hops and is
loop-free, while still achieving high performance.

Reinforcement learning. Machine learning via deep-neural
networks has proven extremely useful in executing many dif-
ferent tasks: machine translation [8], image recognition [27],
and more. Specifically, reinforcement learning has been ap-
plied to playing computer games [36] and beating world-
champions in strategic board games [43], robotics [26], 3D-

1Observe that both Prev and Avgk optimize softmin routing, as
opposed to applying the optimal multicommodity flow computed for
the input DM(s) to route the next DM. The reason is that the latter
option is not well defined (and, in particular, some of the end-points
communicating in the next DM might not communicate at all in
the input DM). We point out that in our experimentation softmin
routing is consistently within at most 5% of the optimum traffic flow
with respect to any input DM and so very closely approximates this
strategy.
2We also evaluated softmin-routing on larger networks, of up to
30 vertices and 102 edges, and saw the same trends as described
below. However, due to time-constraints the neural network in these
experiments did not fully converge. We thus defer the presentation
of these results to the future.

locomotion tasks [40], and beyond. The development and
optimization of reinforcement learning algorithms is thus the
subject of much attention. Our algorithms rely on utilizing
TRPO [40]. We leave the evaluation of other reinforcement-
learning algorithms such as actor-critic-based [35] or the (very
recently proposed) class of Proximal Policy Optimization al-
gorithms [41] to future research.

ML applications to networking. Machine learning has
been applied to various networking contexts including con-
gestion control [47, 12], network bottleneck detection [45],
and optimizing datacetner power consumption [1], resource
allocation [31], and bitrate selection for video streaming [32].
Q-routing [30] applies Q-learning [46] to the network rout-
ing context. Under Q-routing [30], each router individually
learns a mapping from packet headers to outgoing ports. This
involves routers constantly exchanging information, at per
packet resolution, about their latencies with respect to dif-
ferent destinations. Operating at per packet level, and in a
decentralized fashion, poses significant challenges in terms of
scalability, communication overhead, and risk of forwarding
loops resulting from uncoordinated forwarding decisions at
routers.

7. CONCLUSION
We initiated the study of data-driven routing. Our prelimi-

nary results from experimentation with deep reinforcement
learning in this context show that extracting information from
the history of traffic scenarios to generate good routing with
respect to future traffic scenarios is an interesting approach.
We view our results as a first step towards realizing a much
broad research agenda. Optimizing routing is a keystones of
networking research, investigated in a broad variety of con-
texts, including legacy IP networks [15], data centers [3], pri-
vate backbone networks [23], overlay networks [6], publish-
subscribe networks [14], and more. Applying our data-driven
approach to routing protocol design to each of these settings
involves careful formulation of this challenge (e.g., optimiza-
tion objective, specific output) in the context of the specific
environment, and an appropriate choice of machine learning
approach and algorithm. We regard the pursuit of the goal
of identifying in what contexts, and under what approaches,
learning-based routing outperforms today’s state-of-the-art
protocols, as an important and promising research agenda.
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