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Abstract
Scheduling has a significant influence on application perfor-
mance. Deciding on a quantum length can be very tricky,
especially when concurrent applications have various char-
acteristics. This is actually the case in virtualized cloud
computing environments where virtual machines from dif-
ferent users are colocated on the same physical machine.
We claim that in a multi-core virtualized platform, dif-
ferent quantum lengths should be associated with differ-
ent application types. We apply this principle in a new
scheduler called AQL Sched. We identified 5 main appli-
cation types and experimentally found the best quantum
length for each of them. Dynamically, AQL Sched asso-
ciates an application type with each virtual CPU (vCPU)
and schedules vCPUs according to their type on physical
CPU (pCPU) pools with the best quantum length. There-
fore, each vCPU is scheduled on a pCPU with the best quan-
tum length. We implemented a prototype of AQL Sched
in Xen and we evaluated it with various reference bench-
marks (SPECweb2009, SPECmail2009, SPEC CPU2006,
and PARSEC). The evaluation results show that AQL Sched
outperforms Xen’s credit scheduler. For instance, up to 20%,
10% and 15% of performance improvements have been ob-
tained with SPECweb2009, SPEC CPU2006 and PARSEC,
respectively.

Keywords quantum; multi-core; scheduler; virtual ma-
chine

1. Introduction
Cloud data centers are spreading very fast. Most of the time
they are virtualized so that several user applications can be
run on the same physical machine in isolated virtual ma-
chines (VM). Since such datacenters may have a high num-
ber of end-users, they may host many different application
types with various characteristics. For instance, [1] reports
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that Amazon cloud runs a wide spectrum of applications in-
cluding high traffic web sites such as reddit [2], Genome
analysis platforms such as Illumina [3], or SAP applications.
Consequently, it is difficult to design a resource management
policy which satisfies every application. In this paper, we
focus on processor scheduling in such virtualized environ-
ments.

Scheduling can have a significant influence on application
performance [4]. An important parameter of a scheduler is
the quantum length. Deciding on the latter can be problem-
atic [5, 6], especially when various application types have to
be managed as it is the case in cloud data centers. For exam-
ple, a higher quantum length (e.g. 50ms) penalizes latency-
critical applications while it favours memory intensive ap-
plications as it reduces cache contention. The issue is even
more complex as different application types often run con-
currently on the same server in the cloud, due to VM con-
solidation1 (packing the maximum number of VMs atop the
minimum number of servers). As reported in [8, 9], common
scheduling algorithms such as the Linux Completely Fair
Scheduler (CFS) make decisions which lead to frequent ser-
vice level objective violations when latency-critical tasks are
co-located with best effort tasks. In this paper, we subscribe
to that conclusion and we claim that the use of a fixed quan-
tum length for scheduling all application types as done by
most popular virtualization systems (e.g. 30ms in Xen [10]
and 50ms in VMware [12]) exacerbates this issue. An ap-
proach to this issue is to manage different quantum lengths
for different application types. For example, we can improve
the performance of a high traffic web site by about 62% if a
quantum length of 1ms instead of 30ms (the default value)
is used in Xen.

This issue is addressed by recent research works. [13] in-
troduces the BOOST mechanism for improving the latency
of IO applications in a Xen system. However, this solution is
only efficient when applications exclusively run an intensive
IO workload (see Section 4 for more details). [14] also fo-
cuses on the improvement of IO intensive applications. They
propose to expose a processor pool (called turbo processor)
to each VM as a ”co-processor” which is dedicated to kernel

1 For minimizing the energy consumed by servers (which is the largest
fraction (50-70%)[7] of the total cost of ownership), maximizing server
utilization by means of VM consolidation is common practice in the cloud.
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threads that require synchronous processing such as I/O re-
quests. These turbo processors are configured with a lower
quantum length. In a VM all the kernel threads that are per-
forming I/O requests are scheduled on these turbo proces-
sors. This solution is limited since the configuration should
be done manually: the user should know in advance the ker-
nel threads which perform IO requests in order to always
schedule them on turbo processors. By using a lower quan-
tum length, [6] improves the performance of VMs which
perform a significant number of spin-locks. This solution pe-
nalizes last-level cache friendly applications (see Section 3)
since it increases the probability of cache contention.

The common limitation of existing solutions is their re-
striction to a single application type. Putting all of them to-
gether in order to cover all application types is not straight-
forward. This is the purpose of our work. Taking into ac-
count application types at the scheduler level has already
been proposed in Linux schedulers which make the distinc-
tion between real-time tasks and others. However, this dis-
tinction is elementary because a task type is dictated by
its priority which is assigned by the user. We identified 5
main application types which are commonly deployed in
the cloud: (1) IO intensive applications (they are latency-
critical), (2) applications which run concurrent threads and
rely on spin-locks for synchronization, (3) LLC2 friendly ap-
plications (their working set size (WSS) fits within the LLC,
thus they are very sensitive to LLC contention), (4) memory
intensive applications whose WSS overflows the LLC, and
(5) CPU burn applications whose WSS fits within low-level
caches (e.g. L1/L2 in a 3-layer cache architecture). In this
paper, we claim that a specific quantum length (the ”best”
one) should be associated with each application type, thus
improving the performance of all applications wherever they
run in the data center.

We introduce AQL Sched, an Adaptable Quantum Length
Scheduler which follows that direction. In contrast with ex-
isting solutions [6, 14, 15], AQL Sched covers a wide range
of application types. AQL Sched dynamically associates an
application type with each virtual CPU (vCPU) and sched-
ules vCPU on processor pools according to their type and
their memory activity (to reduce LLC contention). Proces-
sor pools are configured with the best quantum length for the
associated application type. By scheduling vCPU not only
according to their type, but also according to their mem-
ory activity, AQL Sched also addressed the LLC contention
problem. AQL Sched implements three main features, each
of them addressing key challenges:

• A vCPU type recognition system (vTRS for short). The
hypothesis of a fixed type for a VM vCPU during its
overall lifetime is not realistic. Several different thread
types can be scheduled by the guest OS on the same
vCPU. Therefore, vTRS should be accurate, i.e dynam-

2 LLC stands for Last Level Cache.

ically identify the right type for each vCPU while mini-
mizing both overhead (use the minimum CPU time) and
intrusivity (avoid as far as possible both the intervention
of cloud users and the modification of the guest OS).

• The identification of the ”best” quantum length.
AQL Sched should know the best quantum length to use
for each application type. The best quantum lengths are
obtained through an offline calibration. The latter should
be done on a representative application set in order to
cover all existing applications.

• The clustering of vCPUs. It consists in mapping vCPUs
of the same type (cluster) to a pool of physical proces-
sors (pCPUs). This clustering also addresses the LLC
contention issue by taking into account vCPU memory
activity. This should be done while ensuring fairness as
common cloud schedulers do: each VM should receive its
booked CPU resources. Since processors are organized
in pools, fairness could be difficult to achieve when the
number of processors is limited (the distribution unit in
pools is the processor, which may be too coarse-grained
with a small number of processors).

We implemented an AQL Sched prototype in the Xen
virtualization system as an extension of its Credit sched-
uler [10]. We performed extensive performance evalua-
tions of our prototype, relying on both micro-benchmarks
and reference benchmarks (SPECweb2009 [16], SPEC-
mail2009 [17], SPEC CPU2006 [18], and PARSEC [20]).
The results show that adapting the quantum length ac-
cording to application types leads to significant benefits in
comparison with the native Xen scheduler: up to 20% for
SPECweb2009, 25% for SPECmail2009, 15% for PARSEC
applications, and 10% for SPEC CPU2006 applications. The
results also demonstrate both the scalability of the prototype
and its negligible overhead. In addition, we compare our
prototype with existing solutions (vTurbo [14], vSlicer [15],
and Microsliced [6]).

The rest of the article is organized as follows. Section 2
presents both the background and the motivations of our
work. Contributions are presented in Section 3 while Sec-
tion 4 presents evaluation results. A review of related works
is presented in Section 5 and the conclusion is drawn in Sec-
tion 6.

2. Motivations
VM scheduling is carried out through vCPUs assignation
to physical processors (hereafter pCPUs). This scheduling
could be a source of performance improvement in virtualized
systems as well as it is the case in native systems. However,
we notice that all improvements which have been obtained
through scheduling in native OSes are ineffective when the
OS runs as a VM. The reason is that in a virtualized sys-
tem, the hardware is controlled by the hypervisor, but not
the guest OS. Fig. 1 shows an illustration where VM1’s
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Figure 1. Scheduling in a virtualized system: This fig-
ure shows that the scheduling in a virtualized system is per-
formed at two levels: guest OS level and hypervisor level.

thread t1 accesses the processor, leaving VM2’s thread (t2)
out, whereas it has been scheduled in by VM2’s sched-
uler. Studying scheduling means answering two fundamental
questions:

• (Q1) which vCPU should acquire the pCPU (at a given
moment)?

• (Q2) for how long (also called quantum length) it can use
the pCPU without pre-emption?

Answering correctly both Q1 and Q2 allows the scheduler
to give to any vCPU the opportunity to use a pCPU, while
avoiding starvation and ensuring fairness. The next section
presents how Q1 and Q2 are answered in Xen [11], one of
the most popular virtualization system.

2.1 Scheduling in Xen
Xen [11] is a popular open-source virtualization system
widely used by cloud providers such as Amazon EC2.
It supports three schedulers which are: Borrowed Virtual
Time (BVT), Simple Earliest Deadline First (SEDF), and
Credit. [28] provides a detailed description of these sched-
ulers. In this paper, we focus on the Credit scheduler which
is the default and the most frequently used scheduler. The
Credit scheduler allocates CPU in proportion to VM as-
signed weights. A second parameter (called cap) allows lim-
iting the amount of computation power received by a VM.
The Credit scheduler works as follows. For each VM v, it
defines remainCredit (a scheduling variable) initialized with
cap. Each time a v vCPU is scheduled on a pCPU, (1) the
scheduler translates into a credit value (let us say burnt-
Credit) the time spent by v on that pCPU (this is performed
every tick, typically 10ms). (2) Subsequently, the sched-
uler computes a new value for remainCredit by subtracting
burntCredit from the remainCredit previous value. If the
computed value is lower than a threshold, v enters the OVER
state, i.e it cannot access a pCPU. Otherwise, v enters the
UNDER state and is queued. VMs with the OVER state have
their remainCredit periodically increased, according to their

initial cap, in order to give them the opportunity to become
schedulable. VMs whose state is UNDER are scheduled in
a round-robin manner (answer to Q1). Regarding Q2, Credit
uses 30ms as the quantum duration.

2.2 The problem
From the previous section, the following issues can be high-
lighted:

• Regarding (Q1). vCPUs are scheduled in a round-robin
way. This is known to disadvantage VMs which often
underuse the CPU (as IO intensive applications tend to
do) in favour of VMs that use their full quantum. This
issue can be handled by using a lower quantum length
(related to Q2).

• Regarding (Q2). The quantum length is given by a fixed
value. Knowing that VMs with different characteristics
could run in the cloud, using a fixed quantum length may
be beneficial for some VMs while harmful for others (see
Section 3.4).

We can conclude that providing a correct answer to Q2 is
crucial since, as a spin-off, it allows addressing issues related
to Q1. Therefore, we focus in this paper on the issues related
to Q2: the use of a fixed quantum length for scheduling
all application types. This problem is not specific to Xen.
For example, VMware, a proprietary virtualization solution
which is the leader in the domain, also uses a fixed quantum
length [12] which is 50ms. Identifying the best quantum
length for each application type is crucial for improving
the performance of all cloud applications at the same time.
In this paper, we propose a new way for scheduling VMs,
called AQL Sched (stands for Adaptable Quantum Length
Scheduler), which goes in that direction. The next section
presents AQL Sched.

3. AQL Sched

In this section, we start with the presentation of the ba-
sic idea behind AQL Sched. Afterwards, we detail each
AQL Sched scheduler design dimension. Although we rely
on Xen for illustration, our contribution is quite general and
is applicable to any virtualization system.

3.1 The basic idea
As discussed in the previous section, performance heavily
depends on the quantum lengths used to schedule vCPUs.
We define a vCPU type at a given instant as the thread type
using the vCPU within the VM at that instant. The basic
idea behind AQL Sched is the exclusive scheduling of
the same vCPU type atop a dedicated pool of pCPUs,
using the ”best” quantum length (the quantum which
leads that type to its best performance). To this end, the
AQL Sched scheduler includes three prominent features:

• A vCPU type recognition system (vTRS for short): we
identified all vCPU types (at least the most prevalent)
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which could be run within the cloud. Section 3.2 presents
the various vCPU types. Therefore, the AQL Sched
scheduler implements an online vTRS (presented in Sec-
tion 3.3) which periodically evaluates the actual type of
a vCPU.

• The identification of the best quantum length: based on
extensive experiments (presented in Section 3.4), we
identified the best quantum length for each application
type.

• The clustering of vCPUs: Once all vCPU actual types are
identified, vCPUs are organized in clusters according to
their type and their memory activity. A pCPU set is as-
sociated to each cluster, while ensuring fairness. pCPU
schedulers which belong to the same cluster are config-
ured with the same quantum length, the best one accord-
ing to the calibration results.

The next sections detail each dimension of our scheduler.

3.2 Application types
We identified three main application characteristics: CPU
burn, IO intensive, and concurrent. In this section, we
present the various application types and we also show how
they can be impacted by the use of an inappropriate quantum
length.

CPU burn applications and the cache contention
problem. These are applications which intensively use the
processor, as well as the main memory. We classify CPU
burn applications into three sub-types according to the use
of CPU caches3:
(i)-Last-level cache friendly applications (noted LLCF ):
their working set size (WSS for short) fits within the last-
level cache (LLC). Therefore, they are very sensitive to LLC
pollution [30, 31]. A lower quantum length leads to an in-
crease of the number of context switches, thus reducing the
probability for LLCF applications to find their data in the
LLC.
(ii)-Trashing applications (noted LLCO): their WWS over-
flows the LLC. They do not suffer from cache pollution.
However, they could act as disturbers for LLCF, according
to the cache replacement policy.
(iii)-Low-level cache (LoLC) friendly applications
(noted LoLCF ): their WWS fits within LoLC (e.g. L1
cache). Such applications are agnostic to cache pollution
since handling LoLC misses are much less expensive than
LLC misses.

IO intensive applications (noted IOInt) and the inter-
rupt handling problem. These are applications which in-
tensively generate IO traffic. In this paper, we consider both
disk and network traffic. In a native system, IO requests are
materialized by interrupts which are immediately handled by
the OS. Therefore, having the entire control of the hardware

3 CPU caches have a strong impact on performance when a wrong quantum
length is used.

and knowing which process is waiting for an IO request,
the OS is able to immediately give the CPU to a previously
blocked process once an interrupt related to it occurs. Things
are different in a virtualized system as illustrated in Fig. 1.
Let us consider the arrival of an interrupt within the VM just
before it is scheduled out. The interrupt will be handled only
when a vCPU of that VM acquires a pCPU. This may occur
tardily, thus increasing IO requests latency [14, 15]. It de-
pends on both the number of vCPUs in the system and the
quantum length.

Concurrent applications (noted ConSpin) and the
lock holder preemption problem. Such applications are
composed of several threads which compete for the same
object (e.g. a data structure) and thus need to synchronize
themselves. Two main mechanisms can be used for synchro-
nization purpose: semaphores and spin-locks (the mostly
used mechanism). The main difference between the two
mechanisms is the way threads are waiting for the lock to be
released. In the semaphore case, a blocked thread loses the
processor when waiting for the lock to be released. This is
not the case with spin-locks, where the waiting thread spins
while waiting for the lock to be released, thus consuming
processing time. This is why spin-locks are generally used
for short duration locking. To improve spin-lock application
performance, the OS ensures that a thread which holds a lock
on an object is not be preempted until it releases the lock.
This caution is ineffective in a virtualized system since vC-
PUs are in their turn scheduled atop pCPUs. This situation
can lead blocked threads to consume their entire quantum
to carry out an active standby. This situation is exacerbated
with higher quantum lengths [6].

3.3 The vCPU type recognition system (vTRS)
3.3.1 The general functioning
Our scheduler implements an online vTRS. The latter relies
on a monitoring system which periodically (every 30ms,
called the monitoring period) collects the value of metrics
needed to identify a vCPU type. It takes its decision after
n monitoring periods. Notice that a small value of n (e.g.
1) allows taking quickly into account sporadic vCPU type
variations. However, this may impact the performance of
the application which uses the vCPU. Indeed, frequent type
variations imply frequent vCPU migrations between pCPUs
(because of clustering, see Section 3.5), which is known to
be negative for the performance of applications. We have
experimentally seen that setting n to 4 is acceptable.

For any metric-based workload recognition, it is crucial
that the set of chosen metrics allows to uniquely identify
all workload behaviour types. vTRS relies on the following
metrics (Section 3.3.2 presents how they are collected) to
identify a vCPU type: the number of IO requests processed
by the vCPU (noted IOInt level), the number of spin-locks
performed by its VM (noted ConSpin level), the LLC miss
ratio (noted LLC MR level), and the LLC reference ratio
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(noted LLC RR level). We have normalized all metrics in
order to have a common unit: a percentage. The latter ser-
vices as a cursor which indicates to what extent (a probabil-
ity) the vCPU is close to a vCPU type. Each cursor (noted
xx cur) is computed as follows.
IOInt and ConSpin cursors:

if (∗ level < ∗ LIMIT )

∗ cur =
∗ level× 100

∗ LIMIT

else

∗ cur = 100

(1)

where * is IOInt or ConSpin. To explain equation 1, let
us consider * be IOInt. IOInt level is the number of IO
requests processed during the previous monitoring period.
IOInt LIMIT is the threshold above which the vCPU is
considered to be 100% IOInt .
LoLCF , LLCF , and LLCO cursors:
Recall that these are sub-types of what we called CPU burn
applications (see Section 3.2). The computation of their cur-
sors relies on the same set of metrics and should respect the
following equation:

LoLCF cur + LLCF cur + LLCO cur = 100 (2)

LoLCF cursor:

if (LLC RR level < LLC RR LIMIT )

LoLCF cur =
(LLC RR LIMIT − LLC RR level)× 100

LLC RR LIMIT

else

LoLCF cur = 0
(3)

where LLC RR LIMIT is the maximum LLC references
a LoLCF is allowed to generate. Indeed, a LoLCF appli-
cation makes very few LLC references (not to say nil). If the
vCPU generates more than LLC RR LIMIT , it will be ei-
ther LLCF or LLCO.
LLCF cursor:

if (LLC MR level < LLC MR LIMIT )

LLCF cur = min(100− LoLCF cur;

(LLC MR LIMIT − LLC MR level)× 100

LLC MR LIMIT
)

else

LLCF cur = 0
(4)

where LLC MR LIMIT is the maximum LLC misses
a LLCF is allowed to generate. In fact, since a LLCF
is cache friendly, the LLC miss number it could gener-
ate should be insignificant. Above LLC MR LIMIT , the
vCPU is considered to be LLCO (trashing).
LLCO cursor:

LLCO cur = 100− LoLCF cur − LLCF cur (5)

A matrix of 5 lines (one per cursor type) and n (num-
ber of monitoring period before deciding on the type of a
vCPU) entries is associated with each vCPU for recording

all the metric values . At the end of each monitoring pe-
riod, each cursor value is computed and stored in the last
entry of the corresponding line (the modification is done in a
sliding-window way). The average value of each line (noted
xx cur avg) is then computed. The vCPU type corresponds
to the cursor type with the highest xx cur avg. Note that
it is difficult for a vCPU to have two or more cursor types
with the same xx cur avg, and even more to have many
xx cur avg equal to the highest value. In the evaluation sec-
tion (Section 4.1), we show how these metrics are used.

3.3.2 Monitoring systems
This section presents the monitoring systems used for track-
ing IOInt level, ConSpin level, LLC RR level, and
LLC MR level. Building these systems includes two key
challenges:

• Intrusiveness. Given the diverse set of applications that
might run in the cloud, vTRS cannot rely on any prior ap-
plication knowledge, semantics, implementation details,
or highly-specific logs. Furthermore, vTRS assumes that
it has to work well without having any control over the
guest VMs or the running applications. This is a desir-
able constraint given that we target hosting environments
that provides only a ”bare-bones” virtual server.

• Overhead. Since vTRS might be running all the time, it
should drain as few CPU time as possible.

Using low-level metrics to infer the workload behaviour is
interesting as it allows vTRS to uniquely identify different
workloads without requiring knowledge about the deployed
applications. The implementation of vTRS is based on low-
level metrics.

The monitoring system for IOInt level. In the Xen
system, the occurrence of an IO request can be observed at
the hypervisor level. Following the split-driver model [45]
(used by Xen as many other virtualization systems), the com-
munication between IO device drivers and guest OSes re-
quires the intervention of both the hypervisor (e.g. interrupt
forwarding using event channel) and the device domain (typ-
ically the privileged domain). Therefore, we propose a moni-
toring system based on event channel analysis, implemented
within the hypervisor. Each vCPU is associated with an IO
request counter. Every time an event is related to an IO re-
quest, the IO request counter of the involved vCPU is incre-
mented.

The monitoring system for ConSpin level. The mon-
itoring system here is straightforward since it relies on the
modern hardware ability to detect spinning situations. For
instance, in Intel Xeon E5620 processor, such situations can
be trapped with
EXIT REASON PAUSE INSTRUCTION (the ”Fancy” fea-
ture, Pause Loop Exiting). We implemented a hypervi-
sor level tool for tracking such situations. To address ar-
chitectures which do not include EXIT REASON PAUSE
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Figure 2. Calibration results: This figure presents the calibration results where values are normalized over the application
type performance when it runs with the Xen default quantum length (30ms). The smaller the performance graph bar the better
the performance.

INSTRUCTION, we propose a second implementation
which relies on a slight modification of the guest OS. The
Xen hypercall framework is augmented with a new hypercall
which wraps the spin-lock API. By this way, the hypervisor
collects the number of spin-locks performed during each
monitoring period.

The monitoring system for LLC RR level and
LLC MR level. The monitoring system here relies on Per-
formance Monitoring Units, provided by nearly all recent
hardware. In the Xen system case, the hypervisor level
framework perfctr-xen [29] can be used to collect LLC
misses, LLC references and the number of executed instruc-
tions, necessary for the calculation of both LLC RR level
and LLC MR level.

3.4 Quantum length calibration
One of the AQL Sched scheduler key feature is its ability
to know the best quantum length to use for scheduling a
given vCPU type. Similarly to several research works on this
topic [6, 15], identifying the best quantum length requires
a calibration phase. We automated the latter by relying on
both an autonomic deployment framework [22] and a self-
benchmarking tool [23]. This section presents the set of
experiments we performed for calibration.

3.4.1 The experimental setup
We relied on micro-benchmarks (presented in Table 1) either
written for this article purpose or taken from previous works.
We selected these benchmarks because they are representa-
tive of each application type. Experiments were performed
on a HP machine with Intel(R) Core(TM) i7-3770 CPU @
3.40GHz processor. Its characteristics are presented in Ta-
ble 2. The machine runs a Ubuntu Server 12.04 virtualized
with Xen 4.2.0. All the application type calibrations follow

Benchmark Description Type
Wordpress [24] simple web application IOInt
Kernbench [25] Linux compilation ConSpin
[27] parsing of a linked list LoLCF , LLCF ,

and LLCO

Table 1. Benchmarks used for calibration. Each benchmark
is representative of an application type.

Main memory 8GB
L1 cache L1 D 32 KB, L1 I 32 KB, 8-way
L2 cache L2 U 256 KB, 8-way
LLC 8 MB, 20-way
Processor 1 Socket, 8 Cores/socket

Table 2. The characteristics of the experimental machine.

the same scenario: a baseline VM (the VM hosting the ap-
plication type being calibrated) colocated with several other
VMs (hosting various workload types). For a specific type
calibration, the difference between experiments comes from
the quantum length and the number of vCPUs (from 2 vC-
PUs to 4 vCPUs4) sharing the same pCPU. We experimented
with four quantum length values: 1ms, 10ms, 30ms, 60ms,
and 90ms. Unless otherwise indicated, a VM is configured
with a single vCPU. The next section presents the calibration
results. Notice that all these results are platform dependent.

3.4.2 Results
All results presented in this section (reported in Fig. 2)
are normalized over the application type performance when
running with the Xen default quantum length (30ms). The
smaller the performance graph bar the better the perfor-
mance.

4 [33] reports that a pCPU runs 4 vCPUs on average in a virtualized data-
center.
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IOInt. From Fig. 2 (a), we can see that a vCPU which
exclusively runs a network workload is quantum length ag-
nostic. In fact, to accommodate low latency, a BOOST state
was recently introduced in Xen [13] to prioritize the schedul-
ing of a vCPU which was blocked waiting for an I/O event.
Unfortunately, this mechanism is inefficient when the vCPU
runs an heterogeneous workload (the web server also exe-
cutes CGI scripts which consume a significant CPU time), as
we can see in Fig. 2 (b). In fact, a vCPU is set to the BOOST
state only if it has not entirely consumed its previous quan-
tum. This is not the case with a heterogeneous workload.
Fig. 2 (b) shows that lower quantum lengths are beneficial
for such workloads. According to our quantum length dis-
cretization, the best length is 1ms. The latter will therefore
be used as the quantum length of IOInt vCPUs.

ConSpin. We configured kernbench to use 4 threads.
Calibration results, presented in Fig. 2 (c), show that the best
quantum length for this vCPU type is 1ms. In fact, higher
quantum lengths increase the average duration of locks (see
Fig. 2 rightmost, when the indicator VM uses 4 vCPUs).

LLCF . The micro-benchmark [27] was configured to use
half of the LLC. Fig. 2 (d) shows that a higher quantum
length is better for LLCF applications. The best length we
found is 90ms.

LoLCF and LLCO. The micro-benchmark [27] was
configured to use 90% of the L2 cache for the LoLCF
calibration while more than the LLC is used for LLCO.
Fig. 2 (e) and (f) respectively show that LoLCF and LLCO
are quantum length agnostic. Therefore, they will be used for
balancing vCPUs clusters (see below).

3.5 Clustering
After each invocation of the vTRS, vCPUs are organized in
clusters so that those which perform better with the same
quantum length are scheduled atop the same pool of pC-
PUs. Clustering has to face two challenges: fairness (which
is a property of cloud schedulers) and LLC contention (since
vCPUs are grouped, clustering cannot ignore related work
advices about vCPU colocation). We introduce a smart clus-
tering solution which takes into account these challenges.
To do so, we use a two-level clustering algorithm. The goal
of the first level algorithm is to fairly distribute vCPUs on
sockets (set of pCPUs) while avoiding as much as possible
the colocation of disturbers (hereafter called ”trashing”) and
sensitive (hereafter called ”non-trashing”) vCPUs. The sec-
ond level algorithm works at the granularity of a socket (note
that the LLC contention issue cannot be addressed here).
Firstly, it organizes vCPUs per cluster according to their
quantum length compatibility (see below). Secondly, it fairly
associates a set of pCPUs with each cluster. The rest of the
section describes the two algorithms.

At a first level (algorithm 1), vCPUs are organized into
two groups (”trashing” and ”non-trashing”) according to
their LLC pollution intensity (lines 4-10). vCPUs which are
part of the trashing list are LLCO (obviously), and IOInt

and ConSpin whose LLCO cursor is tremendous (let us
say greater than 50%). In that case, they are noted IOInt+

and ConSpin+. Concerning the non-trashing list, we have
LLCF and LoLCF (obviously), and IOInt and ConSpin
(noted IOInt− and ConSpin−) which are not part of the
trashing list. Following that first step, trashing and non-
trashing vCPUs are fairly distributed among sockets (lines
12-17). In order to minimize remote memory access which
may result in performance degradation under NUMA archi-
tectures, our algorithm prevents as much as possible spread-
ing vCPUs which belong to the same VM among different
sockets. This is achieved by ordering vCPUs per VM before
assigning them to sockets (line 3). For balancing purpose,
the socket which hosts the last ”trashing” vCPUs could also
be assigned ”non-trashing” vCPUs (line 15) when the num-
ber of ”trashing” vCPUs is not a multiple of ”n”. By putting
LoLCF vCPUs at the beginning of the ”non-trashing” list
(line 11), we minimize the probability to colocate LLCF
vCPUs together with trashing vCPUs (the latter would dis-
turb the former).

Algorithm 1 First level clustering.
Input:
totVCPUs: total number of vCPUs in the system
totSockets: total number of sockets in the system
Begin
1: trashing=∅
2: non-trashing=∅
3: order vCPUs so that those which belong to the same VM follow each other
4: for each vCPU vi do
5: if max(LLCF cur avg, LLCO cur avg, LoLCF cur avg) =

LLCF cur avg then
6: trashing=trashing∪{vi}
7: else
8: non-trashing=non-trashing∪{vi}
9: end if

10: end for
11: order non-trashing vCPUs so that LoLCF vCPUs appear at the beginning
12: n= totV CPUs

totSockets

13: for each socket si do
14: auxSet=(trashing!=∅)?trashing:non-trashing
15: select the first n vCPUs from auxSet and assign them to socket si
16: apply Algorithm 2 to socket si
17: end for
End

The second level clustering (algorithm 2) works at the
socket granularity. It organizes vCPUs according to quan-
tum length affinity rather than vCPU types. In fact, from cal-
ibration results, we made two observations: (1) some distinct
types reach their best performance with the same quantum
length (IOInt and ConSin for example), and (2) LoLCF
and LLCO vCPUs are quantum length agnostic. From these
observations, we define the notion of quantum length com-
patibility (QLC for short) as follows: a vCPU set C, is
q QLC if all its vCPUs reach their best performance with
the quantum length q. For instance, {IOInt, ConSpin}
is 1ms QLC. Therefore, the clustering algorithm works as
follows. First, all vCPUs (except LoLCF and LLCO ones)
are organized into n clusters (lines 2-7), n being the number
of calibrated quantum lengths. LoLCF and LLCO are used
for balancing clusters (line 10). Subsequently, pCPU pools
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Algorithm 2 Second level clustering (socket granularity).
Input:
totVCPUs: total number of vCPUs on the socket
totPCPUs: total number of pCPUs on the socket
Begin
1: i=0 //for indexing clusters (Cq

i )
2: for each quantum length q found by calibration do
3: i++
4: Cq

i =all vCPUs which are q QLC

5: exclude LoLCF and LLCO vCPUs from Cq
i

6: pCPUsPooli = ∅
7: end for
8: n=i
9: pCPUsPooln+1 = ∅

10: use LoLCF and LLCO for balancing clusters (C∗
∗ )

11: k= totV CPUs
totPCPUs //the number of vCPUs per pCPU

12: i=1
13: for each pCPU p do
14: if k≤ sizeOf(Cq

i ) then
15: S={select k unlabelled vCPUs from Cq

i }
16: pCPUsPooli=pCPUsPooli∪{p}
17: else
18: S={select sizeOf(Cq

i ) unlabelled vCPUs from Cq
i }

19: if i<n then
20: S=S∪{select (k-sizeOf(Cq

i )) unlabelled vCPUs from
21: Cq

i+1, .., C
q
i+j}

22: S’s vCPUs are removed from their initial cluster and assigned to
cluster Cdq

n+1 (dq is the default quantum length (30ms)).
23: pCPUsPooln+1=pCPUsPooln+1∪{p}
24: i=i+j
25: else
26: pCPUsPooli=pCPUsPooli∪{p}
27: end if
28: end if
29: Label S’s vCPUs //they have already be treated
30: end for
31: for each cluster Cq

i , including Cdq
n+1 do

32: for each pCPU p in pCPUsPooli do
33: configure p’s scheduler to use the cluster’s quantum length
34: end for
35: end for
End

are built such that fairness is respected (lines 11-29). During
that phase, some pCPUs (less than n) can be assigned vC-
PUs belonging to distinct clusters (line 20). Such vCPUs are
assigned to a default cluster (the default quantum length will
be used for scheduling). Finally, the algorithm reconfigures
each pCPU scheduler so that the appropriate quantum length
is used (lines 30-34). Note that scheduling within a cluster
is ensured by the native scheduler, which is supposed to be
fair.

Fig. 3 illustrates our clustering algorithms. We consider
a four-socket machine, each socket having 4 pCPUs. One
socket is dedicated to the dom0 (the privileged domain). The
machine runs 12 IOInt+, 7 ConSpin−, 17 LLCF , and
12 LLCO (a total of 48 vCPUs). Therefore, fairness is re-
spected if each pCPU runs almost 4 vCPUs. As shown in
Fig. 3, each socket is assigned exactly 16 vCPUs at the end
of the first algorithm. With the second algorithm, 6 clusters
are formed at the end of its execution. Let us explain this
result by focusing on what happens in the first and the third
sockets. All vCPUs in the first socket are 1ms QLC (IOInt
requires 1ms while LLCO is quantum length agnostic), thus
forming a unique cluster. Concerning the third socket, 2 clus-
ters have initially been formed: C90

4 (for all 9 LLCF ) and

Figure 3. An illustration of our 2-level clustering solu-
tion: We consider a four-socket machine, each socket hav-
ing 4 pCPUs. One socket is dedicated to the dom0 (the priv-
ileged domain).

C1
5 (for all 7 ConSpin−). Knowing that assigning pCPUs to

clusters have to ensure fairness (4 vCPUs per pCPU), it was
not possible to do that for C90

4 and C1
5 unaltered. Therefore,

respectively one vCPU and three vCPUs have been removed
from C90

4 and C1
5 in order to form the last cluster C30

6 . Since
the latter contains vCPUs which are not QLC, it is config-
ured to use the default quantum length. The evaluation of
this scenario is presented in the next section.

4. AQL Sched evaluation
This section presents the evaluations results (implemented
within Xen) of our prototype. The evaluation covers the fol-
lowing aspects: the accuracy of vTRS, the effectiveness of
the prototype, and finally the prototype overhead. By de-
fault, the experimental context is identical to the environ-
ment presented in Section 3.4. Note that a common prac-
tice [6, 14, 15] is to pin privileged domains’ (dom0, driver
domains) vCPUs to dedicated cores. Therefore, they are not
considered by our scheduler. Otherwise specified, all the re-
sults are normalized over the performance with the default
Xen Scheduler. A normalized performance value lower than
1 (respectively higher than 1) means that the application
performs better (respectively worse) with Xms of quantum
length than 30ms of quantum length.

4.1 Accuracy of vTRS
The first experiments evaluate the online vTRS, and at the
same time they validate the robustness of the calibration
results.

Benchmarks. These experiments were performed us-
ing reference benchmarks: SPECweb2009 [16], SPEC-
mail2009 [17], and SPEC CPU2006 [18], which are im-
plementations of an internet service, a corporate mail server,
and a set of CPU intensive applications, respectively. The
performance is evaluated with the network request average
latency for the former, the average time needed for handling
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IOInt SPECweb2009, SPECmail2009
ConSpin bodytrack, blackscholes, canneal,

dedup, facesim, ferret, fluidanimate
freqmine, raytrace, streamcluster

LLCF astar, Xatanbmck, bzip2
gcc, omnetp

LoLCF hmmer, gobmk, perlbench
sjeng; h264ref

LLCO mcf, libquantum

Table 3. Application types recognition: This table shows
the type of each experimented application as detected by
vTRS (an illustration of vTRS execution is shown in Fig-
ure 4).

Scenarios Clusters Applications #pCPUs
S1 C1

1 5ConSpin, 3LoLCF 2
C90

2 5LLCF , 3LoLCF 2
S2 C1

1 5IOInt, 3LLCO 2
C90

2 5LLCF , 3LLCO 2
S3 C90

1 all all
S4 C1

1 4IOInt, 4ConSpin 2
C90

2 4LLCF , 4LLCO 2
S5 C1

1 4IOInt, 4ConSpin 2
C90

2 4LLCF , 2LLCO, 2LoLCF 2

Table 5. Clustering applied to each scenario presented in
Table 4.

a mail operation for the second, and each program execution
time for the latter. We also used PARSEC [20], a set of multi-
threaded programs, to evaluate applications using spin-locks
for synchronization. PARSEC benchmark’s performance is
measured with execution time.

Results. Fig. 4 shows for 5 representative applications, 50
collected decision metric values ∗ cur avg used by vTRS
for inferring the vCPU type. We define an application type
as the type having its curve higher than the others most of
the time (this is represented in the figure by the red lines).
We can see that vTRS effectively identifies each benchmark
type. For example, SPECweb2009 is identified as IOInt,
which is its known behavior. Table 3 summarizes each ap-
plication type according to vTRS results. Notice that for
LLCF , LoLCF and LLCO, these results depend on our
experimental environment. Indeed, an application which has
been identified as LLCO in our environment may be identi-
fied as LLCF on a machine with a larger LLC.

Concerning the calibration result robustness, Fig. 5 shows
the normalized performance of each application when run-
ning with different quantum lengths. The experimental en-
vironment and procedure in this experiment are the same as
in Section 3.4.1, but we limited the evaluation to 4 vCPUs
sharing a pCPU (This is the most common case observed in
cloud platforms [6]). We can see that each application ob-
tains its best performance when the quantum length corre-
sponding to the type identified by vTRS is used. For exam-
ple, the best performance of SPECweb2009 (which is typed
as IOInt) is obtained when the quantum length is 1ms.
Remember that 1ms corresponds to the calibrated quantum
length for IOInt applications.

4.2 AQL Sched effectiveness and comparison with
existing approaches

Evaluation on a single-socket machine.
We firstly evaluate the effectiveness of the prototype using
simple use cases which correspond to different colocated
application scenarios (presented in Table 4). Each scenario
runs 16 vCPUs on 4 pCPUs, resulting in 4 vCPUs per pCPU
for fairness. Table 5 shows for each scenario how the cluster-
ing system has organised vCPUs most of the time during the
experiment. Fig. 6 left presents the performance of each ap-
plication for each scenario. We can see that, except LoLCF
and LLCO applications (which are quantum length agnos-
tic), our prototype outperforms the default Xen scheduler
(up to 20% of improvement).
Evaluation on a 4-socket machine.
We also evaluated our prototype by experimenting the com-
plex use case presented in Section 3.5. The experimental
machine for this experiment is an Intel Xeon Processor E5-
4603 (composed of 4 sockets). For this specific experiment,
we relied on micro benchmarks in order to exactly simu-
late the application behaviour presented in Section 3.5 (e.g.
IOInt+). Evaluation results are presented in Fig. 6 right.
Remember that the clusters generated in this scenario are
presented in Fig 3. As noted above, the worse performance
obtained with our prototype is the same as with native Xen.
Let us focus on LLCF performance, which is not the same
in clusters C90

3 , C90
4 and C30

6 . Since C30
6 uses the default

quantum length, LLCF performance in that cluster is the
lowest. Concerning LLCF in C90

3 , they share the LLC of
their socket with IOInt+ vCPUs, which are disturbers. This
explains the lower performance of LLCF in C90

3 in compar-
ison with C90

4 (which does not host any disturber). Further-
more, this also shows the benefits of the clustering system.
Quantum length customization benefit.
The previous section showed the benefits of the whole sys-
tem. The latter relies on two main phases: clustering and
quantum length customization. We underlined the benefits of
the clustering step in the previous section (see the comments
about LLCF ’s performance in clusters C90

3 and C90
4 ). Let us

focus now on the benefits of the quantum length customiza-
tion step. To do so, we replayed the previous experiment,
but the quantum length customization step was discarded.
We experimented with three quantum lengths: small (1ms),
medium (30ms) and large (90ms). Fig 7 presents the ob-
tained results. Results are normalized over the performance
when the customization and clustering steps are both ac-
tivated: a performance graph bar above the normal value
means that the activation of the quantum length customiza-
tion step has improved applications’ performance (higher is
better). We can see that this is true for almost all application
types. Obviously, some applications which run in the default
cluster (C30

6 , the default Xen quantum length is used) do not
have their best performance. This is the case for ConSpin−

and LLCF which perform better with a small and a large
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Scenarios Colocated types Applications
S1 5ConSpin, 5LLCF fluidanimate, 6LoLCF bzip2, hmmer
S2 5IOInt, 5LLCF , 6LLCO SpecWeb2009, bzip2, libquantum
S3 5LLCF , 5LLCO, 6LoLCF bzip2, libquantum, hmmer
S4 4IOInt, 4ConSpin, 4LLCF , 4LLCO SPECweb2009, facesim, bzip2, hmmer
S5 4IOInt, 4ConSpin, 4LLCF , 2LLCO, 2LoLCF SPECweb2009, facesim, bzip2, hmmer, libquantum

Table 4. Colocation scenarios.
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This figure shows that even if the clustering step improves
applications’ performance, performance can be further im-
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normalized over the performance when both clustering and
quantum length customization steps are activated.

quantum length respectively. We can also notice that the
small quantum length has good results as AQL Sched for
most application types, except LLCF applications.

Comparison with other approaches.
We compare our solution with 3 other solutions:

• vTurbo [14]: it dedicates a pool of pCPUs for scheduling
IOInt vCPUs, using a lower quantum length (see Sec-
tion 1).

• vSlicer [15]: it uses a lower quantum length for schedul-
ing IOInt vCPUs. In comparison with vTurbo, vSlicer
does not dedicate a pCPU pool for the exclusive schedul-
ing of IOInt vCPUs.

• Microsliced [6]: it uses a lower quantum length for
scheduling all vCPU types.

These solutions do not implement any online vTRS. There-
fore, we manually configured each solution in order to ob-
tain its best performance. We decided to use a 1 ms quantum
length for both vTurbo and Microsliced solutions. Evalua-
tions are based on scenario S5 described in Table 3. Fig. 8
presents evaluation results. The latter are normalized over
the performance obtained with the default Xen scheduler.
We can see that our prototype provides in the worse case
the same performance as other solutions. In summary, none
of the other solutions provides the best performance for all
application types. AQL Sched is the first algorithm which
adapts the quantum length to the behavior of the application,
thus outperforming existing solutions.

4.3 Measuring AQL Sched’s overhead
Monitoring systems. IO request monitoring is accom-
plished by analyzing event channels. This task does not incur
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Figure 8. Comparison with other systems: This fig-
ure presents the comparison results of our prototype
(AQL Sched) with vTurbo, vSlicer, and Microsliced. These
results are normalized over the performance obtained with
the default Xen scheduler.

any overhead since the required mechanisms already exists
in the hypervisor. Regarding the monitoring systems which
rely on hardware counters, we did not observe any overhead,
as also reported by [26].
Recognition and clustering systems. The complexity of
both systems is O(max(m,n)) where m and n are respec-
tively the number of processors and the number of vCPUs.
Knowing that both values are in the range of hundreds (we
are in the context of virtualized systems, not native sys-
tems with thousands of tasks), O(max(m,n)) is negligi-
ble. Regarding the overhead that can be induced by vCPU
migration across pools, we avoid it with some implementa-
tion tricks. In Xen, a CPU pool is represented by a single
data structure shared among schedulers of the same pool.
Therefore, a vCPU migration between different CPU pools
requires a data structure migration. This data structure mi-
gration can generate an overhead. This implementation is
justified in Xen because Xen allows the use of different
schedulers (Credit, SEDF) at the same time. In our case,
only one scheduler is used (Credit). Therefore, we use the
same data structure for all CPU pools. By doing so, no data
structure copy is required when a vCPU migration is per-
formed, thus avoiding any overhead due to migration.
The entire prototype. Putting all components together, the
overhead of the entire prototype is negligible. We did not
observe any degradation above 1%.

5. Related work
Many research studies have investigated scheduling in virtu-
alized systems for improving application performance. Most
of them focused on a specific aspect: interrupt handling (for
IO intensive applications), lock holder preemption (for con-
current applications), prioritization (for real time applica-
tions) and LLC cache contention.

Interrupt handling. There were many prior efforts [6,
13–15, 33, 36] to improve latency sensitive applications in
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Solutions/Features Dynamic application Handled application types Overhead Hardware modification
type recognition required

vTurbo Not supported IO No overhead no
vslicer Not supported IO No overhead no

Microsliced Not supported IO, spin-lock Overhead for CPU yes
burn applications

Xen BOOST supported IO No overhead no
AQL sched supported IO, spin-lock, CPU burn No overhead no

Table 6. AQL Sched compared with exiting solutions.

virtualized environments. Xen introduced a boosting mech-
anism which preempts the current running vCPU to quickly
handle IO requests. However, this solution is not efficient
for heterogeneous workloads (see Section 3.4). [15] presents
vSlicer, a scheduler which uses a different quantum length
(a lower value) for scheduling vCPUs which perform IO re-
quests. In the same vein, [14] presents vTurbo, a solution
which dedicates one or several pCPUs for scheduling IO in-
tensive vCPUs using a lower quantum length. [6] proposed
to shorten the quantum length of all vCPUs, thus improving
both IO intensive and concurrent application performance.
In order to reduce the impact of this solution on LLC sensi-
tive applications, [6] introduced a new hardware design for
minimizing LLC contention.

Lock holder preemption. This is a well known issue in
virtualized environment [36–39]. The commonly used ap-
proach to address it, is coscheduling: vCPUs of the same VM
are always scheduled in or out at the same time. This solu-
tion is limited because vCPUs do not always need the pro-
cessor at the same time. [36] proposed an adaptive dynamic
coscheduling solution where the scheduler dynamically de-
tects VMs having long waiting time spin-locks. Only these
VM vCPUs are coscheduled. [39] introduced Preemptable
Ticket Spin-lock as a new locking primitive for virtualized
environments in order to address the problem of lock waiter
preemption. The latter improves the performance of tradi-
tional ticket spin-locks by allowing the preemption of unre-
sponsive thread waiter. [6] demonstrates that using a shorter
time slice is the simplest solution for addressing the lock
holder preemption problem. Our work confirms that conclu-
sion.

Prioritization. Several schedulers [40–44] were de-
signed for real time applications in virtualized environments.
For instance, [42] adds a new priority called RealT in Xen
Credit scheduler for considering real-time guests. They are
inserted at the first position in the run queue. [43, 44] pro-
posed a similar solution. Our work does not consider real-
time applications because our research context is cloud en-
vironments where fairness has to be ensured.

LLC cache contention. Several previous works pro-
posed cache aware scheduling algorithms to address the LLC
contention issue. In the context of non-virtualized environ-
ments, [31, 50, 51] presented some methods for evaluating
the sensitivity and aggressiveness of an application. [30] pro-
posed ATOM (Adaptive Thread-to-Core Mapper), a heuris-
tic for finding the optimal mapping between a set of pro-

cesses and cores such that the effect of cache contention is
minimized. [52] is situated in the same vein. It proposed two
scheduling algorithms for distributing processes across dif-
ferent cores such that the miss rate is fairly distributed. [53]
presented a cache aware scheduling algorithm which awards
more processing time to a process when it suffers from cache
contention. Several researches [54, 55] addressed the prob-
lem of LLC contention in virtualized environments. [54]
studied the effects of collocating different VM types under
various VM to processor placement schemes for discovering
the best placement. [55] proposed a cache aware VM con-
solidation algorithm which computes a consolidation plan
so that the overall LLC misses are minimized in the IaaS.

Positioning of our work. Table 6 summarizes the com-
parison of existing solutions with our solution (AQL sched).
We can see that existing solutions have the following lim-
itations: (1) they only address a specific issue; (2) vCPUs
need to be manually typed (which is not realistic as a vCPU
type may change); (3) some of them require the modification
of the hardware (making them not yet usable). Our solution
smartly addresses all these issues while being applicable in
both today’s virtualized systems and hardware.

6. Conclusion
This article presented AQL Sched, the first VM scheduler
which dynamically adapts the quantum length according to
the application behavior in a multi-core platform. To this
end, AQL Sched dynamically associates an application type
with each vCPU and uses the best quantum length to sched-
ule vCPUs of the same type. We identified 5 main appli-
cation types and experimentally found their best quantum
length. By using a two-level clustering algorithm, our so-
lution takes into account the LLC contention issue. We
implemented our solution in Xen and we showed its ef-
fectiveness by experimenting with several reference bench-
marks (SPECweb2009, SPECmail2009, SPEC CPU2006,
and PARSEC). We compared our solution with the default
Xen Credit scheduler, vSlicer, vTurbo and Microsliced and
we obtained an improvement of up to 25%.
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