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Challenges for Data Driven Systems

Eiko Yoneki

University of Cambridge Computer Laboratory

Quick History of Data Management

 4000 B C Manual recording
 From tablets to papyrus…to paper
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1800's - 1940's

 Punched cards (no fault-tolerance)
 Binary data
 1911: IBM appeared
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1940's - 1970's

 Magnetic tapes
 Batch transaction processing
 Hierarchical DBMS
 Network DBMS 
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1980's

 Relational DBMS (tables) and SQL
 ACID (Atomicity Consistency Isolation Durability)

 Client-server computing
 Parallel processing
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1990's - 2000's

 The Internet...
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2010's

 NoSQL: BASE instead of ACID
Basic Availability, Soft-state, Eventual consistency

 Big Data is emerging!
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2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity

 Increase of Processing Capacity

 Availability of Data

 Hardware and software             
technologies can manage                    
ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)

8



5

Examples of Big Data

 Facebook:
 300 PB data warehouse (600TB/day)
 1 billion users 

 Twitter Firehose:
 500 million tweet/day 

 CERN
 15 PB/year - Stored in RDB

 Google:
 40000 search queries/second

 ebay
 9PB of user data+ >50 TB/day

 Amazon web services
 Estimated ~450000 servers for AWS
 S3 450B objects, peak 290K request/sec

 JPMorganChase
 150PB on 50K+ servers with 15K apps running
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Scale-Up vs. Scale-Out
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 Popular solution for big data processing  to scale 
and build on distribution and combine theoretically 
unlimited number of machines in a single 
distributed storage 

 Scale up: add resources to single node in a system 

 Scale out: add more nodes to a system
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Challenges
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 Distribute and shard parts over machines
 Still fast traversal and read to keep related data together

 Scale out instead scale up

 Avoid naïve hashing for sharding
 Do not depend on the number of node

 But difficult add/remove nodes

 Trade off – data locality, consistency, availability, 
read/write/search speed, latency etc.

 Analytics requires both real time and post fact 
analytics – and incremental operation

Big Data: Technologies 
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 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, 

Google App Engine, Elastic, Azure)

cf. Multi-core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop 

Distributed File System (HDFS), Google File 
System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. 

NoSQL DB - Redis, BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)
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Big Data Analytics Stack
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GFS Spanner Dremel

Percolator

Streaming 
Processing

Resource Manager

Database

Storage

Execution Engine

Graph 
Processing

Machine learning
Query

Language

Unicorn

Distributed Infrastructure
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 Computing + Storage transparently
 Cloud computing, Web 2.0
 Scalability and fault tolerance 

 Distributed servers
 Amazon EC2, Google App Engine, Elastic, Azure

 System? OS, customisations 

 Sizing? RAM/CPU based on tiered model 

 Storage? Quantity, type 

 Distributed storage
 Amazon S3
 Hadoop Distributed File System (HDFS)
 Google File System (GFS), BigTable…
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Data Model/Indexing
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 Support large data

 Fast and flexible access to data

 Operate on distributed infrastructure

 Is SQL Database sufficient? 

NoSQL (Schema Free) Database
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 NoSQL database

 Operate on distributed infrastructure 
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency 

guarantees and weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …
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MapReduce Programming 
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 Target problem needs to be parallelisable

 Split into a set of smaller code (map)

 Next small piece of code executed in parallel 

 Results from map operation get synthesised
into a result of original problem (reduce)

Data Flow Programming 
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 Non standard programming models

 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark/Tez
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Easy Cases
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 Sorting
 Google 1 trillion items (1PB) sorted in 6 Hours

 Searching
 Hashing and distributed search

 Random split of data to feed M/R operation 

 BUT Not all algorithms are parallelisable

Streaming Data

 Departure from traditional static web pages

 New time-sensitive data is generated 
continuously

 Rich connections between entities

 Challenges:

 High rate of updates

 Continuous data mining - Incremental data 
processing

 Data consistency

20
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Techniques for Analysis

 Applying these techniques: larger and more 
diverse datasets can be used to generate more 
numerous and insightful results than smaller, 
less diverse ones

21

 Classification
 Cluster analysis
 Crowd sourcing
 Data fusion/integration
 Data mining
 Ensemble learning
 Genetic algorithms
 Machine learning
 NLP
 Neural networks
 Network analysis
 Optimisation

 Pattern recognition
 Predictive modelling
 Regression
 Sentiment analysis
 Signal processing
 Spatial analysis
 Statistics
 Supervised learning
 Simulation
 Time series analysis
 Unsupervised learning
 Visualisation 

Do we need new types of algorithms?
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 Cannot always store all data
 Online/streaming algorithms 

 Have we seen x before?
 Rolling average of previous K items

 Incremental updating

 Memory vs. disk becomes critical
 Algorithms with limited passes

 N2 is impossible and fast data processing
 Approximate algorithms, sampling

 Iterative operation (e.g. machine learning)

 Data has different relations to other data
 Algorithms for high-dimensional data (efficient 

multidimensional indexing)
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Typical Operation with Big Data

23

 Scalable clustering for parallel execution

 Smart sampling of data

 Find similar items    efficient multidimensional 
indexing

 Incremental updating of models     support 
streaming

 Distributed linear algebra     dealing with large 
sparse matrices

 Plus usual data mining, machine learning and 
statistics
 Supervised (e.g. classification, regression)

 Non-supervised (e.g. clustering..)

How about Graph (Network) Data?
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Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents

Airline Graphs

Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Social media data

Web 1.4B 
pages(6.6B 
links) 
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How about Graph Data?

25

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents

Airline Graphs

Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Social media data

Web 1.4B 
pages(6.6B 
links) 

Data-Parallel vs. Graph-Parallel

 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed 

MapReduce) 

 Not every graph algorithm is parallelisable 
(interdependent computation) 

 Not much data access locality

 High data access to computation ratio

26
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Graph-Parallel
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 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model

 Use of iterative Bulk Synchronous Parallel Model    
Pregel (Google), Giraph (Apache), Graphlab, 
GraphChi (CMU)

 Optimisation over data parallel

GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  

NAIAD (MSR)

BSP Example
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 Finding the largest value in a connected graph

Message

Local Computation

Communication

Local Computation

Communication

…



15

Graph Computation

29

 Two characteristic patterns: traversal and 
fixed-point iteration

 Breadth-first search (weakly-connected 
components)
 Search proceeds in a frontier

 90% computation, 10% communication 

 PageRank
 All vertices active in each iteration

 50% computation, 50% communication

(* based on Pannotia benchmark suite)

Big Data Analytics Stack
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Hadoop Big Data Analytics Stack

31

Storm

Spark Big Data Analytics Stack

32
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Do we really need a large cluster?
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 A laptop can perform sufficiently

from blog by Frank McSherry

Single Computer?

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

Computation Platform

HD/SSD 
(External Memory)

Input
Storage/Stream

 Use of powerful HW/SW parallelism
 SSDs as external memory

 GPU for massive parallelism

 Exploit graph structure/algorithm for processing 

34

Parallelism
Here

GPU
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Big Data Analytics Stack
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GFS Spanner Dremel

Percolator

Streaming 
Processing
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Storage
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Query

Language

Unicorn

Topic Areas

Session 1: Introduction 

Session 2: Programming in Data Centric Environment 

Session 3: Processing Models of Large-Scale Graph Data

Session 4: Data Flow Programming Hands-on Tutorial 
with EC2

Session 6: Stream Data Processing + Guest lecture

Session 5: Optimisation in Data Processing

Session 7: Machine Learning for Computer System's 
Optimisation

Session 8: Project Study Presentation
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Summary

 R212 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2015_2016 

 Enjoy the course!
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