
1

Challenges for Data Driven Systems

Eiko Yoneki

University of Cambridge Computer Laboratory

Quick History of Data Management

 4000 B C Manual recording
 From tablets to papyrus…to paper

2A. Payberah’2014



2

1800's - 1940's

 Punched cards (no fault-tolerance)
 Binary data
 1911: IBM appeared

3A. Payberah’2014

1940's - 1970's

 Magnetic tapes
 Batch transaction processing
 Hierarchical DBMS
 Network DBMS 

4A. Payberah’2014



3

1980's

 Relational DBMS (tables) and SQL
 ACID (Atomicity Consistency Isolation Durability)

 Client-server computing
 Parallel processing

5A. Payberah’2014

1990's - 2000's

 The Internet...

6A. Payberah’2014



4

2010's

 NoSQL: BASE instead of ACID
Basic Availability, Soft-state, Eventual consistency

 Big Data is emerging!

7A. Payberah’2014

2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity

 Increase of Processing Capacity

 Availability of Data

 Hardware and software             
technologies can manage                    
ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)

8



5

Examples of Big Data

 Facebook:
 300 PB data warehouse (600TB/day)
 1 billion users 

 Twitter Firehose:
 500 million tweet/day 

 CERN
 15 PB/year - Stored in RDB

 Google:
 40000 search queries/second

 ebay
 9PB of user data+ >50 TB/day

 Amazon web services
 Estimated ~450000 servers for AWS
 S3 450B objects, peak 290K request/sec

 JPMorganChase
 150PB on 50K+ servers with 15K apps running

9

Scale-Up vs. Scale-Out

10

 Popular solution for big data processing  to scale 
and build on distribution and combine theoretically 
unlimited number of machines in a single 
distributed storage 

 Scale up: add resources to single node in a system 

 Scale out: add more nodes to a system



6

Challenges

11

 Distribute and shard parts over machines
 Still fast traversal and read to keep related data together

 Scale out instead scale up

 Avoid naïve hashing for sharding
 Do not depend on the number of node

 But difficult add/remove nodes

 Trade off – data locality, consistency, availability, 
read/write/search speed, latency etc.

 Analytics requires both real time and post fact 
analytics – and incremental operation

Big Data: Technologies 

12

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, 

Google App Engine, Elastic, Azure)

cf. Multi-core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop 

Distributed File System (HDFS), Google File 
System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. 

NoSQL DB - Redis, BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)



7

Big Data Analytics Stack

13

GFS Spanner Dremel

Percolator

Streaming 
Processing

Resource Manager

Database

Storage

Execution Engine

Graph 
Processing

Machine learning
Query

Language

Unicorn

Distributed Infrastructure

14

 Computing + Storage transparently
 Cloud computing, Web 2.0
 Scalability and fault tolerance 

 Distributed servers
 Amazon EC2, Google App Engine, Elastic, Azure

 System? OS, customisations 

 Sizing? RAM/CPU based on tiered model 

 Storage? Quantity, type 

 Distributed storage
 Amazon S3
 Hadoop Distributed File System (HDFS)
 Google File System (GFS), BigTable…



8

Data Model/Indexing

15

 Support large data

 Fast and flexible access to data

 Operate on distributed infrastructure

 Is SQL Database sufficient? 

NoSQL (Schema Free) Database

16

 NoSQL database

 Operate on distributed infrastructure 
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency 

guarantees and weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …



9

MapReduce Programming 

17

 Target problem needs to be parallelisable

 Split into a set of smaller code (map)

 Next small piece of code executed in parallel 

 Results from map operation get synthesised
into a result of original problem (reduce)

Data Flow Programming 

18

 Non standard programming models

 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark/Tez



10

Easy Cases

19

 Sorting
 Google 1 trillion items (1PB) sorted in 6 Hours

 Searching
 Hashing and distributed search

 Random split of data to feed M/R operation 

 BUT Not all algorithms are parallelisable

Streaming Data

 Departure from traditional static web pages

 New time-sensitive data is generated 
continuously

 Rich connections between entities

 Challenges:

 High rate of updates

 Continuous data mining - Incremental data 
processing

 Data consistency

20



11

Techniques for Analysis

 Applying these techniques: larger and more 
diverse datasets can be used to generate more 
numerous and insightful results than smaller, 
less diverse ones

21

 Classification
 Cluster analysis
 Crowd sourcing
 Data fusion/integration
 Data mining
 Ensemble learning
 Genetic algorithms
 Machine learning
 NLP
 Neural networks
 Network analysis
 Optimisation

 Pattern recognition
 Predictive modelling
 Regression
 Sentiment analysis
 Signal processing
 Spatial analysis
 Statistics
 Supervised learning
 Simulation
 Time series analysis
 Unsupervised learning
 Visualisation 

Do we need new types of algorithms?

22

 Cannot always store all data
 Online/streaming algorithms 

 Have we seen x before?
 Rolling average of previous K items

 Incremental updating

 Memory vs. disk becomes critical
 Algorithms with limited passes

 N2 is impossible and fast data processing
 Approximate algorithms, sampling

 Iterative operation (e.g. machine learning)

 Data has different relations to other data
 Algorithms for high-dimensional data (efficient 

multidimensional indexing)



12

Typical Operation with Big Data

23

 Scalable clustering for parallel execution

 Smart sampling of data

 Find similar items    efficient multidimensional 
indexing

 Incremental updating of models     support 
streaming

 Distributed linear algebra     dealing with large 
sparse matrices

 Plus usual data mining, machine learning and 
statistics
 Supervised (e.g. classification, regression)

 Non-supervised (e.g. clustering..)

How about Graph (Network) Data?

24

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents

Airline Graphs

Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Social media data

Web 1.4B 
pages(6.6B 
links) 



13

How about Graph Data?

25

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents

Airline Graphs

Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Social media data

Web 1.4B 
pages(6.6B 
links) 

Data-Parallel vs. Graph-Parallel

 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed 

MapReduce) 

 Not every graph algorithm is parallelisable 
(interdependent computation) 

 Not much data access locality

 High data access to computation ratio

26



14

Graph-Parallel

27

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model

 Use of iterative Bulk Synchronous Parallel Model    
Pregel (Google), Giraph (Apache), Graphlab, 
GraphChi (CMU)

 Optimisation over data parallel

GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  

NAIAD (MSR)

BSP Example

28

 Finding the largest value in a connected graph

Message

Local Computation

Communication

Local Computation

Communication

…



15

Graph Computation

29

 Two characteristic patterns: traversal and 
fixed-point iteration

 Breadth-first search (weakly-connected 
components)
 Search proceeds in a frontier

 90% computation, 10% communication 

 PageRank
 All vertices active in each iteration

 50% computation, 50% communication

(* based on Pannotia benchmark suite)

Big Data Analytics Stack

30

GFS Spanner Dremel

Percolator

Streaming 
Processing

Resource Manager

Database

Storage

Execution Engine

Graph 
Processing

Machine learning
Query

Language

Unicorn



16

Hadoop Big Data Analytics Stack

31

Storm

Spark Big Data Analytics Stack

32



17

Do we really need a large cluster?

33

 A laptop can perform sufficiently

from blog by Frank McSherry

Single Computer?

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

Computation Platform

HD/SSD 
(External Memory)

Input
Storage/Stream

 Use of powerful HW/SW parallelism
 SSDs as external memory

 GPU for massive parallelism

 Exploit graph structure/algorithm for processing 

34

Parallelism
Here

GPU



18

Big Data Analytics Stack

35

GFS Spanner Dremel

Percolator

Streaming 
Processing

Resource Manager

Database

Storage

Execution Engine

Graph 
Processing

Machine learning
Query

Language

Unicorn

Topic Areas

Session 1: Introduction 

Session 2: Programming in Data Centric Environment 

Session 3: Processing Models of Large-Scale Graph Data

Session 4: Data Flow Programming Hands-on Tutorial 
with EC2

Session 6: Stream Data Processing + Guest lecture

Session 5: Optimisation in Data Processing

Session 7: Machine Learning for Computer System's 
Optimisation

Session 8: Project Study Presentation

36



19

Summary

 R212 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2015_2016 

 Enjoy the course!

37


