
GraphChi: Large-Scale Graph 
Computation on Just a PC
Kyrola Et al.

James Trever



Could we compute Big Graphs on a single 
machine?

Disk Based Computation



Why would you want to?

- Distributed State is hard to program
- Cluster crashes can occur
- Cumbersome

- Efficient Scaling
- Parallelise each task vs Parallelise across tasks

- Cost
- Easier management and simpler hardware

- Energy Consumption
- Full utilisation of a single computer

- Easier Debugging



Contents
- Computational Model
- Challenges
- Parallel Sliding Windows
- Implementation & Experiments
- Evolving Graphs



Computational Model



Computational Model



Storage Model

- Compressed Sparse Row (CSR) - allows for fast loading of out-edges 
- Compressed Sparse Column (CSC) - allows for fast loading of in-edges



Storage Model

- Compressed Sparse Row (CSR) - allows for fast loading of out-edges 
- Compressed Sparse Column (CSC) - allows for fast loading of in-edges

Why not both?



Challenges



Random Access Problem

- Symmetrised adjacency file with values 

1.3



Random Access Problem

- File Index Pointers

1.3



Possible Solutions

1. Use SSD as memory extension
○ Too many small objects, need millions of reads and writes a second

2. Compress the graph structure to fit in RAM
○ Associated values do not compress well

3. Cachine the hot vertices
○ Unpredictable Performance



Parallel Sliding Windows (PSW)



PSW: Phases

PSW processes the graph one sub-graph at a time

1. Load
2. Compute
3. Write

In one iteration the whole graph is processed



PSW: Intervals and Shards - Load

- Subgraph = Interval



PSW: Example - Load



PSW: Example - Load



PSW: General Example - Load



PSW: Compute Phase

- UpdateFunction executes on intervals vertices in parallel
- Edges have pointers to the loaded data blocks



PSW: Write Phase

- Blocks are written back to disk asynchronously 



Implementation and Experiments



Preprocessing Step

- Sharder program included with GraphChi 

1. Counts the in-degree of each vertex and computes the prefix sum over the 
degree array so that each interval contains same number of in edges

2. Sharder writes each edge to temporary scratch file belonging to the shard
3. Sharder Processes each scratch file 
4. Sharder computes binary degree file containing in and out degree for each 

vertex (used to calculate memory requirements)



Preprocessing Experiment



Comparison Experiment

Mac Mini Dual Core 2.5 GHz, 8GB Ram
AMD Server 8 core server with 4 dual core CPU’s



Throughput Experiment



Evolving Graphs



Evolving Graphs

- Add and remove edges in streaming fashion whilst continuing computation
- Most interesting networks grow continuously 



PSW and Evolving Graphs



PSW and Evolving Graphs



Evolving Graphs - Experiment



Graphs Used



Critical Evaluation

- Few mistakes in the paper referencing incorrect tables or quoting wrong 
figures

- Cannot efficiently support dynamic ordering like priority ordering or efficiently 
support graph traversals or vertex queries

- Evolving graph experiments not very clear
- No monetary analysis 



Bibliography

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph computation 
on just a pc,” in Proceedings of the 10th USENIX Conference on Operating 
Systems Design and Implementation, OSDI’12, (Berkeley, CA, USA), pp. 31–46, 
USENIX Association, 2012.

And his original presentation found here:

https://www.usenix.org/sites/default/files/conference/protected-
files/kyrola_osdi12_slides.pdf


