SPADE: The System S Declarative
Stream Processing Engine

B.Gedik, H. Andrade, K. Wu, P. Yu, and M. Doo
(SIGMOD. 2008)

Presented by Kenneth Lui (wckl2)
10" Nov 2015

Background - Stream Processing Engine, System S

Motivation

System Design & Contribution - Programming Model, Optimization
Example & Experiment Result

Future Work

Summary & Critical Analysis

Background

Stream Processing Engine

® “On-the-fly” processing of time ordered series of events or
values

o Low-Latency is key
® Data enter the system as “input stream”, get filtered,
processed, aggregated etc. in the network of

“computational elements” connected by streams
® Related Works
o MillWheel (Google), Apache Storm (Twitter)

Stream Processing Use Gases

® Web log processing
® Sensor networks
® Real-time financial analysis

® Large-scale, distributed data stream processing
middleware and application development framework

® Applications organized as data-flow graphs

Sets of Processing Elements (PEs) connected by streams
PEs are distributed over the computing nodes

Each stream carries a series of Stream Data Objects (SDOs)
The PE ports and streams connecting them are typed

® Provide reliability, scheduling, placement optimization,
security, fault tolerance etc.

O O O O

Stream Processing Core (System S)

® Dataflow Graph Manager (DGM)

©)

Define stream connections among
PEs

® Data Fabric (DR)

©)

Distributed data transport daemons

® Resource Manager (RM)

©)

Makes global resource decisions for
PEs and streams

® PE Execution Container (PEC)

©)

Provide run-time context and security
barrier

SAN

Dataflow Graph Manager
(DGM)

| |

Data Fabric Server
(DF)

Resource Manager
(RM)

PEC

Data Fabric Server
(DF)

|

|

Storage
subsystem §

Figure 1: Key components of System S that provide

services to run stream applications [18].

Before SPADE, there were two ways of use System S...

Programming in PE API

® For experienced developer

® Write programs in C++ or Java to interact directly with PEs

® Design configuration files to specify the topology of the
data-flow graph (i.e. connect the PEs)

Working with Domain Specific Queries

® Forless experienced developers
® [ssue natural language-like domain-specific inquiries
® Inquiry Services (INQ) planner makes use of a repository

of existing PEs to automatically create a data-flow graph

10

SPADE - Declarative middle-ground

® SPADE = Stream Processing Application Declarative
Engine

® Declarative = Developers describe the problem rather than
the steps to solve it

® Allow integration of User defined functions (UDFs) and
Legacy Code

® Some manual tuning on deployment is possible

"

Users: Little/No Expertise Users: Knowledgeable in Declarative Querying Users: Experts in Programming

< >

Describe the application
using a toolkit of stream
processing operators

@@L;

High level Inquiry
E.g.:"Estimate the
customer satisfaction”

Program PEs
Connect them

[l
emn EERD 'R R '
R R @ w :
System S Runtime
System S Runtime System S Runtime
User interacts with an User interacts with a User interacts with
Intelligent System High-level Language a Programming API
INQ SPADE PE API

Figure 1: System S from an application developer’s perspective

System Design & Gontribution

CGode Generation Framework

® Compiler takes query specification written in SPADE’s
intermediate language and produces these native parts in

System S:

PE template

Node pools

PE topology

PE binaries

Job description (from System S Job Description Language Compiler)

O O O O O

14

CGode Generation Framework

® SPADE compiler’s output is highly customized based on

the system characteristics

o Underlying network topology
o Computer architecture

15

Figure 3: Spade’s code generation framework

16

Stream Processing Operators

Functor

Aggregate

Join

Sort

Barrier - used as a synchronization point
Punctor - generate punctuation for windowing
Split

Delay

17

Edge Adapters

® Source

o Parsing

o Tuple creation
® Sink

o From streams to external data
o E.g. file system, network

18

SPADE Programming Language

%1 and %2 are the first and second parameters Application meta-
##define NCNT min(%1,16) #* number of nodes to utilize *# . .

#define FCNT min(%2,30) #* number of days to analyze *# information
[Application]

vwap # trace

Type definitions
[Typedefs]

typespace vwap

Node pools

[Nodepools]

nodepool ComputingPool[16] := () # automatically allocated from available nodes
[Program]

#* Source data format: Program body

* 1 ticker:String, 8 volume:Float, 15 askprice:Float, 22 peratio:Float,
* 2 . *§

19

SPADE Programming Language

for begin @day 1 to FCNT # for each day

stream TradeQuote@day(ticker:String, ttype:String, price:Float, volume:Float,
askprice:Float, asksize:Float)

:= Source () ["file:////gpfs/ss/taq"+select (Rday<10,"0@day", "@day")+".csv",
nodelays, csvformat] { 1, 5, 7-8, 15-16 }

-> partition["mypartition @day"], ComputingPool[mod (@day-1,NCNT)]

stream TradeFilter@day(ticker: String, myvwap:Float, volume:Float)
:= Functor (TradeQuote@day) [ttype="Trade" & volume>0.0]
{ myvwap := price*volume }

-> partitionFor (TradeQuote@day), ComputingPool [mod (@day-1,NCNT)]

stream VWAPAggregator@day (ticker:String, svwap:Float, svolume:Float)
:= Aggregate (TradeFilter@day) [ticker]
{ Any(ticker), Sum(myvwap), Sum(volume) }
-> partitionFor (TradeQuote@day), ComputingPool [mod (@day-1,NCNT)]

20

SPADE Programming Language

stream BargainIndex(@day (ticker:String, bargainindex:Float)
:= Join (VWAPQRday ; QuoteFilter@day)
[{ticker}={ticker}, cvwap > askprice*100.0]
{ bargainindex := exp(cvwap-askprice*100.0) *asksize }
-> partitionFor (TradeQuotel@day), ComputingPool [mod (@day-1,NCNT)]

export stream NonZeroBargainIndex(@day (schemaof (BargainIndex@day))
:= Functor (BargainIndex@day) [bargainindex>0.0] {}
-> partitionFor (TradeQuotel@day), ComputingPool [mod (@day-1,NCNT)]

Null := Sink (NonZeroBargainIndex@day) ["file:///Bargains@day.dat"]{}
-> partitionOf (TradeQuote@day), ComputingPool [mod (@day-1,NCNT)]
for _end

21

User-Defined Operators

® Can make use of external libraries to implement domain-
customized operations

® Allow converting legacy code to System S

Support interfacing with external platforms

22

Advanced Features

® List Types and Vectorized Operations
® Flexible Windowing Schemes

o Tumbling windows - fixed number of tuples
o Sliding windows - expiration policy + trigger mechanism
o Punctuation-based window boundaries

® Pergroup Aggregates and Joins

23

Compiler Optimizations

® Operator Grouping
® Execution Model
® \Vectorized Processing

24

Operator Grouping

® Having multiple operators
per PE is more efficient

® Reduce message
transmission and queuing
delays

Figure 4: Example operator to PE mapping

25

Execution Model

® To make use of multiple cores, SPADE create multiple PE’s
to be run on the same node

® Multi-threading built-in operators were still under
development

26

Vectorized Processing

® Single-Instruction Multiple-Data (SIMD)
® E.g.Intel’'s Streaming SIMD Extensions (SSE)

27

Operator Fusion

® Operators in the same PE are chained as depth-first
function calls, without any queuing
® Forthread-safe operators, SPADE supports multi-threading

to cut short the main PE thread
o May require locking

28

Two-phase learning-based Optimization

® First, compile the application in a special “Statistics
Collection mode”

o Application is run in this mode to collect metrics like CPU load and
network traffic

® Then, compile the application for a second time

o Optimizer uses statistics to guide operator grouping & fusion to come up
with the PEs

29

Example & Experiment result

30

Bargain Index Gomputation

Compute the bargain index (a scalar metric for stock
trading analysis) for every stock symbol that appears in the
source stream

Source: Live stock data can be read directly from the IBM
WebSphere Front Office (WFO)

Sink: IBM DB2 Data Stream Edition - an extension of DB2 designed
for persisting high-rate data streams

31

Bargain Index Gomputation

Functor Aggregate Functor

Pass trades and Compute moving average Compute VWAP
compute volume*price (for each symbol)

Functor

Functor

Join

Write results
to DB2 DSE

Read input
from WFO

Pass quotes Compute bargain index Drop zero indexes

Figure 5: Bargain Index computation for all stock symbols

32

Experiment

Process 22 days’ worth of ticker data for = 3000 stocks
with a total of = 250 million trade and quote transactions
= 20GBs of data, sharded per file per day on the disk on
IBM’s General Parallel File System (GPFS)

Parallelize the processing by running 22 instances (PEs),
one for each trading day, over 16 nodes in our cluster

33

Issues with this experiment

® All operators within the same Totaltwple ingest rate
query are packed into a single
PE (i.e. single PE per day)

® No inter-node communication or

T 2308 23:06 23:07 23:08

o Time (hh:mm)
coopera tion [nTupies]
. S O m e reso u rces a re id | e afte r Figure 6: Tuple ingestion rate for the parallel and
distributed bargain index computation application,
N . using 22 parallel queries distributed over 16 nodes.
23:07

® Compare with native System S
APl implementation?

Future Work

35

Future Work

Visual development environment
Domain-specific operator

o (e.g. signal processing, stream data mining)
Higher-level languages (Stream SQL, semantic

composition framework)
o A 2013 paper about “IBM Streams Processing Language (SPL)”
Interoperability

o Data ingestion and externalization with other platforms

36

Summary & Critical Analysis

Summary

® A declarative language which balances flexibility and
barrier of entry

® Toolkit (compiler, stream operators)
® Bring stream processing to System S

38

Critical Analysis - System

® Partition and optimization happen at compile-time
® Does not adopt to capacity change (+/- nodes)
® No priority concept for the tuples

39

Critical Analysis - Paper

® Two-phase learning-based optimization is not discussed in
depth

o | am very curious about the development/deployment workflow here
o It should compare the performance with/without this optimization

® No fault tolerance analysis
® Example & Evaluation not representative

40

Thank you!

Any questions?

A

