
SPADE: The System S Declarative 
Stream Processing Engine 

B.Gedik, H. Andrade, K. Wu, P. Yu, and M. Doo
(SIGMOD. 2008)

Presented by Kenneth Lui (wckl2)
10th Nov 2015 1



● Background - Stream Processing Engine, System S

● Motivation
● System Design & Contribution - Programming Model, Optimization

● Example & Experiment Result
● Future Work
● Summary & Critical Analysis

Outline

2



Background

3



Stream Processing Engine
● “On-the-fly” processing of time ordered series of events or 

values
○ Low-Latency is key

● Data enter the system as “input stream”, get filtered, 
processed, aggregated etc. in the network of 
“computational elements” connected by streams

● Related Works
○ MillWheel (Google), Apache Storm (Twitter)

4



Stream Processing Use Cases
● Web log processing
● Sensor networks
● Real-time financial analysis

5



System S
● Large-scale, distributed data stream processing 

middleware and application development framework
● Applications organized as data-flow graphs

○ Sets of Processing Elements (PEs) connected by streams
○ PEs are distributed over the computing nodes
○ Each stream carries a series of Stream Data Objects (SDOs)
○ The PE ports and streams connecting them are typed

● Provide reliability, scheduling, placement optimization, 
security, fault tolerance etc.

6



● Dataflow Graph Manager (DGM)
○ Define stream connections among 

PEs

● Data Fabric (DR)
○ Distributed data transport daemons

● Resource Manager (RM)
○ Makes global resource decisions for 

PEs and streams

● PE Execution Container (PEC)
○ Provide run-time context and security 

barrier

Stream Processing Core (System S)

7



Motivation

Before SPADE, there were two ways of use System S...

8



Programming in PE API
● For experienced developer
● Write programs in C++ or Java to interact directly with PEs
● Design configuration files to specify the topology of the 

data-flow graph (i.e. connect the PEs)

9



Working with Domain Specific Queries
● For less experienced developers
● Issue natural language-like domain-specific inquiries
● Inquiry Services (INQ) planner makes use of a repository 

of existing PEs to automatically create a data-flow graph

10



SPADE - Declarative middle-ground
● SPADE = Stream Processing Application Declarative 

Engine
● Declarative = Developers describe the problem rather than 

the steps to solve it
● Allow integration of User defined functions (UDFs) and 

Legacy Code
● Some manual tuning on deployment is possible

11



12



System Design & Contribution

13



Code Generation Framework
● Compiler takes query specification written in SPADE’s 

intermediate language and produces these native parts in 
System S:
○ PE template
○ Node pools
○ PE topology
○ PE binaries
○ Job description (from System S Job Description Language Compiler)

14



Code Generation Framework
● SPADE compiler’s output is highly customized based on 

the system characteristics
○ Underlying network topology
○ Computer architecture

15



16



Stream Processing Operators
● Functor
● Aggregate
● Join
● Sort
● Barrier - used as a synchronization point
● Punctor - generate punctuation for windowing
● Split
● Delay

17



Edge Adapters
● Source

○ Parsing
○ Tuple creation

● Sink
○ From streams to external data
○ E.g. file system, network

18



SPADE Programming Language
# %1 and %2 are the first and second parameters
#define NCNT min(%1,16) #* number of nodes to utilize *#
#define FCNT min(%2,30) #* number of days to analyze *#

[Application]
vwap # trace

[Typedefs]
typespace vwap

[Nodepools]
nodepool ComputingPool[16] := () # automatically allocated from available nodes

[Program]
#* Source data format:
 * 1 ticker:String, 8 volume:Float, 15 askprice:Float, 22 peratio:Float,
 * 2 … *#

19

Application meta-
information

Type definitions

Node pools

Program body



for_begin @day 1 to FCNT # for each day

   stream TradeQuote@day(ticker:String, ttype:String, price:Float, volume:Float, 
askprice:Float, asksize:Float)
      := Source()["file:////gpfs/ss/taq"+select(@day<10,"0@day","@day")+".csv", 
nodelays, csvformat] { 1, 5, 7-8, 15-16 }
    -> partition["mypartition_@day"], ComputingPool[mod(@day-1,NCNT)]

   stream TradeFilter@day(ticker: String, myvwap:Float, volume:Float)
      := Functor(TradeQuote@day) [ttype="Trade" & volume>0.0]
          { myvwap := price*volume }
     -> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

   stream VWAPAggregator@day(ticker:String, svwap:Float, svolume:Float)
     := Aggregate(TradeFilter@day ) [ticker]
        { Any(ticker), Sum(myvwap), Sum(volume) } 
     -> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

SPADE Programming Language

20



   stream BargainIndex@day(ticker:String, bargainindex:Float)
     := Join(VWAP@day ; QuoteFilter@day )
        [{ticker}={ticker}, cvwap > askprice*100.0]
           { bargainindex := exp(cvwap-askprice*100.0)*asksize }
     -> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

   export stream NonZeroBargainIndex@day(schemaof(BargainIndex@day))
     := Functor(BargainIndex@day) [bargainindex>0.0] {}
     -> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

   Null := Sink(NonZeroBargainIndex@day) ["file:///Bargains@day.dat"]{}
     -> partitionOf(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]
for_end

SPADE Programming Language

21



User-Defined Operators
● Can make use of external libraries to implement domain-

customized operations
● Allow converting legacy code to System S
● Support interfacing with external platforms

22



Advanced Features
● List Types and Vectorized Operations
● Flexible Windowing Schemes

○ Tumbling windows - fixed number of tuples
○ Sliding windows - expiration policy + trigger mechanism
○ Punctuation-based window boundaries

● Pergroup Aggregates and Joins

23



Compiler Optimizations
● Operator Grouping
● Execution Model
● Vectorized Processing

24



Operator Grouping
● Having multiple operators 

per PE is more efficient
● Reduce message 

transmission and queuing 
delays

25



Execution Model
● To make use of multiple cores, SPADE create multiple PE’s 

to be run on the same node
● Multi-threading built-in operators were still under 

development 

26



Vectorized Processing
● Single-Instruction Multiple-Data (SIMD)
● E.g. Intel’s Streaming SIMD Extensions (SSE)

27



Operator Fusion
● Operators in the same PE are chained as depth-first 

function calls, without any queuing
● For thread-safe operators, SPADE supports multi-threading 

to cut short the main PE thread
○ May require locking

28



Two-phase learning-based Optimization
● First, compile the application in a special “Statistics 

Collection mode”
○ Application is run in this mode to collect metrics like CPU load and 

network traffic

● Then, compile the application for a second time
○ Optimizer uses statistics to guide operator grouping & fusion to come up 

with the PEs

29



Example & Experiment result

30



Bargain Index Computation
● Compute the bargain index (a scalar metric for stock 

trading analysis) for every stock symbol that appears in the 
source stream

● Source: Live stock data can be read directly from the IBM 
WebSphere Front Office (WFO)

● Sink: IBM DB2 Data Stream Edition − an extension of DB2 designed 

for persisting high-rate data streams

31



Bargain Index Computation

32



Experiment
● Process 22 days’ worth of ticker data for ≈ 3000 stocks 

with a total of ≈ 250 million trade and quote transactions
● ≈ 20GBs of data, sharded per file per day on the disk on 

IBM’s General Parallel File System (GPFS)
● Parallelize the processing by running 22 instances (PEs), 

one for each trading day, over 16 nodes in our cluster

33



Issues with this experiment
● All operators within the same 

query are packed into a single 
PE (i.e. single PE per day)

● No inter-node communication or 
cooperation

● Some resources are idle after 
~23:07

● Compare with native System S  
API implementation? 34



Future Work

35



Future Work
● Visual development environment
● Domain-specific operator

○ (e.g. signal processing, stream data mining)

● Higher-level languages (Stream SQL, semantic 
composition framework)
○ A 2013 paper about “IBM Streams Processing Language (SPL)”

● Interoperability
○ Data ingestion and externalization with other platforms

36



Summary & Critical Analysis

37



Summary
● A declarative language which balances flexibility and 

barrier of entry
● Toolkit (compiler, stream operators)
● Bring stream processing to System S

38



Critical Analysis - System
● Partition and optimization happen at compile-time
● Does not adopt to capacity change (+/- nodes)
● No priority concept for the tuples

39



Critical Analysis - Paper
● Two-phase learning-based optimization is not discussed in 

depth
○ I am very curious about the development/deployment workflow here
○ It should compare the performance with/without this optimization

● No fault tolerance analysis
● Example & Evaluation not representative

40



Thank you!

Any questions?

41


